forked from phishman3579/java-algorithms-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFloydWarshall.java
82 lines (70 loc) · 3.2 KB
/
FloydWarshall.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
package com.jwetherell.algorithms.graph;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.jwetherell.algorithms.data_structures.Graph;
/**
* Floyd–Warshall algorithm is a graph analysis algorithm for finding shortest
* paths in a weighted graph (with positive or negative edge weights).
* <p>
* Worst case: O(V^3)
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm">Floyd-Warshall Algorithm (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
public class FloydWarshall {
private FloydWarshall() { }
public static Map<Graph.Vertex<Integer>, Map<Graph.Vertex<Integer>, Integer>> getAllPairsShortestPaths(Graph<Integer> graph) {
if (graph == null)
throw (new NullPointerException("Graph must be non-NULL."));
final List<Graph.Vertex<Integer>> vertices = graph.getVertices();
final int[][] sums = new int[vertices.size()][vertices.size()];
for (int i = 0; i < sums.length; i++) {
for (int j = 0; j < sums[i].length; j++) {
sums[i][j] = Integer.MAX_VALUE;
}
}
final List<Graph.Edge<Integer>> edges = graph.getEdges();
for (Graph.Edge<Integer> e : edges) {
final int indexOfFrom = vertices.indexOf(e.getFromVertex());
final int indexOfTo = vertices.indexOf(e.getToVertex());
sums[indexOfFrom][indexOfTo] = e.getCost();
}
for (int k = 0; k < vertices.size(); k++) {
for (int i = 0; i < vertices.size(); i++) {
for (int j = 0; j < vertices.size(); j++) {
if (i == j) {
sums[i][j] = 0;
} else {
final int ijCost = sums[i][j];
final int ikCost = sums[i][k];
final int kjCost = sums[k][j];
final int summed = (ikCost != Integer.MAX_VALUE &&
kjCost != Integer.MAX_VALUE) ?
(ikCost + kjCost)
:
Integer.MAX_VALUE;
if (ijCost > summed)
sums[i][j] = summed;
}
}
}
}
final Map<Graph.Vertex<Integer>, Map<Graph.Vertex<Integer>, Integer>> allShortestPaths = new HashMap<Graph.Vertex<Integer>, Map<Graph.Vertex<Integer>, Integer>>();
for (int i = 0; i < sums.length; i++) {
for (int j = 0; j < sums[i].length; j++) {
final Graph.Vertex<Integer> from = vertices.get(i);
final Graph.Vertex<Integer> to = vertices.get(j);
Map<Graph.Vertex<Integer>, Integer> map = allShortestPaths.get(from);
if (map == null)
map = new HashMap<Graph.Vertex<Integer>, Integer>();
final int cost = sums[i][j];
if (cost != Integer.MAX_VALUE)
map.put(to, cost);
allShortestPaths.put(from, map);
}
}
return allShortestPaths;
}
}