-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpredict.py
133 lines (98 loc) · 4.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import os
import pickle
import random
import sys
import numpy as np
import tensorflow as tf
from utils.myutils import batch_gen, init_tf, seq2sent
import keras
import keras.backend as K
from utils.model import create_model
from timeit import default_timer as timer
from models.custom.graphlayer import GCNLayer
def gen_pred(model, data, comstok, comlen, batchsize, config, strat='greedy'):
# right now, only greedy search is supported...
tdats, coms, wsmlnodes, wedge_1 = zip(*data.values())
tdats = np.array(tdats)
coms = np.array(coms)
wsmlnodes = np.array(wsmlnodes)
wedge_1 = np.array(wedge_1)
for i in range(1, comlen):
results = model.predict([tdats, coms, wsmlnodes, wedge_1],
batch_size=batchsize)
for c, s in enumerate(results):
coms[c][i] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = seq2sent(com, comstok)
return final_data
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('model', type=str, default=None)
parser.add_argument('--modeltype', dest='modeltype', type=str, default=None)
parser.add_argument('--gpu', dest='gpu', type=str, default='')
parser.add_argument('--data', dest='dataprep', type=str, default='../data')
parser.add_argument('--outdir', dest='outdir', type=str, default='modelout/')
parser.add_argument('--batch-size', dest='batchsize', type=int, default=30)
parser.add_argument('--outfile', dest='outfile', type=str, default=None)
args = parser.parse_args()
modelfile = args.model
outdir = args.outdir
dataprep = args.dataprep
gpu = args.gpu
batchsize = args.batchsize
modeltype = args.modeltype
outfile = args.outfile
config = dict()
# User set parameters#
config['maxastnodes'] = 100
config['asthops'] = 10
if modeltype == None:
modeltype = modelfile.split('_')[0].split('/')[-1]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
tdatstok = pickle.load(open('%s/tdats.tok' % (dataprep), 'rb'), encoding='UTF-8')
comstok = pickle.load(open('%s/coms.tok' % (dataprep), 'rb'), encoding='UTF-8')
smltok = pickle.load(open('%s/smls.tok' % (dataprep), 'rb'), encoding='UTF-8')
seqdata = pickle.load(open('%s/dataset.pkl' % (dataprep), 'rb'))
allfids = list(seqdata['ctest'].keys())
datvocabsize = tdatstok.vocab_size
comvocabsize = comstok.vocab_size
smlvocabsize = smltok.vocab_size
config['tdatvocabsize'] = datvocabsize
config['comvocabsize'] = comvocabsize
config['smlvocabsize'] = smlvocabsize
# set sequence lengths
config['tdatlen'] = 50
config['comlen'] = len(list(seqdata['ctrain'].values())[0])
config['smllen'] = len(list(seqdata['strain_nodes'].values())[0])
config['batch_size'] = batchsize
comlen = len(seqdata['ctest'][list(seqdata['ctest'].keys())[0]])
config, _ = create_model(modeltype, config)
print("MODEL LOADED")
model = keras.models.load_model(modelfile, custom_objects={"tf":tf, "keras":keras,'AlexGraphLayer':GCNLayer})
node_data = seqdata['stest_nodes']
edgedata = seqdata['stest_edges']
config['batch_maker'] = 'graph_multi_1'
print(model.summary())
# set up prediction string and output file
comstart = np.zeros(comlen)
stk = comstok.w2i['<s>']
comstart[0] = stk
outfn = outdir+"/predictions/predict-{}.txt".format(modeltype)
outf = open(outfn, 'w')
print("writing to file: " + outfn)
batch_sets = [allfids[i:i+batchsize] for i in range(0, len(allfids), batchsize)]
for c, fid_set in enumerate(batch_sets):
st = timer()
for fid in fid_set:
seqdata['ctest'][fid] = comstart #np.asarray([stk])
bg = batch_gen(seqdata, 'test', config, nodedata=node_data, edgedata=edgedata)
batch = bg.make_batch(fid_set)
batch_results = gen_pred(model, batch, comstok, comlen, batchsize, config, strat='greedy')
for key, val in batch_results.items():
outf.write("{}\t{}\n".format(key, val))
end = timer ()
print("{} processed, {} per second this batch".format((c+1)*batchsize, int(batchsize/(end-st))), end='\r')
outf.close()