-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate.py
171 lines (158 loc) · 7.5 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np, torch, argparse, os, tqdm, pdb
import torchaudio
from vschaos.distributions import Distribution
import trajectories as tj
from vschaos.utils.load import load_model_from_run
generate_tasks = ['reconstruct', 'morph', 'trajectories']
parser = argparse.ArgumentParser()
parser.add_argument('mode', type=str, help="generation mode", choices=generate_tasks)
parser.add_argument('path', type=str, help="model path")
parser.add_argument('--dataset', type=str, help="reference dataset (used to retrieve metadata)")
parser.add_argument('--meta', type=str, nargs="*", default=[], help="indicates metadata for conditioned model : TASK1 label1 TASK2 label2 ... ")
parser.add_argument('--sr', type=int, help="sample rate")
parser.add_argument("--cuda", type=int, default=None)
# General arguments
parser.add_argument('-b', '--n_batches', type=int, default=3)
parser.add_argument('-s', '--n_steps', type=int, default=512)
parser.add_argument('-o', '--out_path', type=str, default="outs/")
parser.add_argument('--sample_latent', type=int, default=0, help="sample latent from encoder (default: False)")
# Reconstruction arguments
parser.add_argument('-f', '--files', type=str, nargs="*", help="Reconstruction files (dirs or files)")
parser.add_argument("--jitter", type=float, default=None, help="add latent jitter to reconstruction")
# Trajectories arguments
parser.add_argument('--trajectories', type=str, nargs="*", default=["line", "sin", "random"])
args = parser.parse_args()
# Prepare output
if not os.path.isdir(args.out_path):
os.makedirs(args.out_path)
outs = {}
# Prepare device
if args.cuda is None:
device = torch.device('cpu')
else:
device = torch.device("cuda:"+str(args.cuda))
model, config, transform = load_model_from_run(args.path, verbose=True)
model = model.to(device)
model = model.eval()
# Set sample rate
sr = None
if hasattr(model, "sr"):
sr = model.sr
else:
sr = args.sr
assert sr is not None, "sr not found in model; please provide sample rate with the --sr keyword"
y_enc = {}
y_dec = {}
if hasattr(model, "conditionings"):
parsed_meta = {}
assert len(args.meta) % 2 == 0, "--meta must be : task_1 val_1 task_2 val_2 ..."
for i in range(0, len(args.meta), 2):
parsed_meta[args.meta[i]] = args.meta[i+1]
for task, info in model.conditionings.items():
if info['embedding'] == 'OneHot':
if task in parsed_meta:
if args.mode == "reconstruct":
value = torch.LongTensor([[int(parsed_meta[task])]])
elif args.mode == "trajectories":
value = torch.LongTensor([[int(parsed_meta[task])]]).repeat(args.n_batches, 1)
else:
if args.mode == "reconstruct":
value = torch.randint(0, info['dim'], (1, 1))
elif args.mode == "trajectories":
value = torch.randint(0, info['dim'], (args.n_batches, 1))
if 'encoder' in info['target']:
y_enc[task] = value.to(device)
if 'decoder' in info['target']:
y_dec[task] = value.to(device)
# Process
if args.mode == "reconstruct":
if not os.path.isdir(os.path.join(args.out_path, "reconstructions")):
os.makedirs(os.path.join(args.out_path, "reconstructions"))
assert args.files is not None, "--files arguments needed for reconstruction mode"
# list files
files = []
for f in args.files:
if os.path.isfile(f):
files.append(f)
elif os.path.isdir(f):
for r, d, filelist in os.walk(f):
for f_tmp in filelist:
if os.path.splitext(f_tmp)[1].lower() in [".wav", ".mp3", ".aif", ".aiff"]:
files.append(os.path.join(r, f_tmp))
assert len(files) > 0, "no files found"
# import files
outs = {}
for f in tqdm.tqdm(files, total=len(files), desc="forwarding samples..."):
name = os.path.splitext(os.path.basename(f))[0]
x_tmp, sr_tmp = torchaudio.load(f)
if sr is not None:
if sr != sr_tmp:
x_tmp = torchaudio.functional.resample(x_tmp, sr_tmp, sr)
x_tmp = transform(x_tmp)
x_tmp = x_tmp.to(device)
y_enc_tmp = {}
y_dec_tmp = {}
with torch.no_grad():
if hasattr(model, "conditionings"):
for k, v in y_enc.items():
y_enc_tmp[k] = v.repeat(1, x_tmp.shape[0])
latent_tmp = model.encode(x_tmp.unsqueeze(0), y=y_enc_tmp)
if args.sample_latent:
latent_tmp = latent_tmp.sample()
else:
latent_tmp = latent_tmp.mean
if hasattr(model, "conditionings"):
for k, v in y_dec.items():
if k in model.prediction_modules:
y_dec_tmp[k] = model.prediction_modules[k](latent_tmp).probs.argmax(-1)
else:
y_dec_tmp[k] = v.repeat(1, latent_tmp.shape[1])
if args.jitter is None:
x_tmp = model.decode(latent_tmp, y=y_dec_tmp)
else:
x_tmp = model.decode(latent_tmp + args.jitter * torch.randn_like(latent_tmp), y=y_dec_tmp)
if isinstance(x_tmp, Distribution):
x_tmp = x_tmp.mean
x_tmp = transform.invert(x_tmp[0].cpu())
if args.jitter is None:
filename = os.path.join("reconstructions", f"{name}.wav")
else:
filename = os.path.join("reconstructions", name+f"_jitter={args.jitter}.wav")
torchaudio.save(os.path.join(args.out_path, filename), x_tmp.cpu(), sample_rate=sr)
elif args.mode == "trajectories":
args.out_path = os.path.join(args.out_path, "trajectories")
if not os.path.isdir(args.out_path):
os.makedirs(args.out_path)
# compute trajectories
tj.GLOBAL_DIM = model.config.latent.dim
t_range = np.array([0., 1.])
t = np.linspace(t_range[0], t_range[1], num=args.n_steps)[np.newaxis]
t = np.repeat(t, args.n_batches, 0)
# Here, select comment / uncomment the type of trajectories you want to
# generate.
for traj_type in args.trajectories:
if traj_type == "line":
traj = tj.Line_(t_range, [np.random.randn(args.n_batches, tj.GLOBAL_DIM), np.random.randn(args.n_batches, tj.GLOBAL_DIM)])
elif traj_type == "sin":
traj = tj.Sin_(freq=2.0, amplitude=np.random.uniform(-5, 5.0, size=(args.n_batches, tj.GLOBAL_DIM)),origin=np.random.randn(args.n_batches, tj.GLOBAL_DIM))
elif traj_type == "square":
traj = tj.Square_(freq=2.0, amplitude=np.random.uniform(-5, 5.0, size=(args.n_batches, tj.GLOBAL_DIM)),origin=np.random.randn(args.n_batches, tj.GLOBAL_DIM))
elif traj_type == "ellipse":
traj = tj.Ellipse_(t_range)
elif traj_type == "random":
traj = tj.RandomWalk_(mean=0.0, stddev=0.2)
else:
print('trajectory %s not known'%traj_type)
continue
current_trajectory = torch.from_numpy(traj(t)).float()
y_dec_tmp = {}
for k, v in y_dec.items():
y_dec_tmp[k] = v.repeat(1, current_trajectory.shape[1])
decoded_traj = model.decode(current_trajectory.to(model.device), y=y_dec_tmp)
if isinstance(decoded_traj, Distribution):
decoded_traj = decoded_traj.mean
x_reconstruction = transform.invert(decoded_traj.cpu())
for i, rec in enumerate(x_reconstruction):
if rec.max() > 1.0:
rec = rec / rec.max()
torchaudio.save(os.path.join(args.out_path, f"{traj_type}_{i}.wav"), rec, sample_rate=transform.sr)