-
Notifications
You must be signed in to change notification settings - Fork 0
/
TrafficLightClassifier.py
75 lines (59 loc) · 2.81 KB
/
TrafficLightClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import tensorflow as tf
from PIL import Image
import cv2
import argparse
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to the input image")
ap.add_argument("-m", "--frozen-model-path", required=False,
default='./object_detection/fine_tuned_models/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb',
help="path to the frozen traffic light detection model")
args = vars(ap.parse_args())
image_path = args['image']
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = './object_detection/config/labels_map.pbtxt'
NUM_CLASSES = 4
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(args['frozen_model_path'], 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: np.expand_dims(image_np, axis=0)})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=2)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
while True:
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break