Skip to content

Latest commit

 

History

History
88 lines (69 loc) · 2.97 KB

README.md

File metadata and controls

88 lines (69 loc) · 2.97 KB

Benchmark

Benchmark scripts is provided to quickly get the model inference performance.

Step 1: Prepare xFasterTransformer

Please refer to Installation. This example supports using source code which means you don't need install xFasterTransformer into pip and just build xFasterTransformer library, and it will search library in src directory.

Step 2: Prepare models

Please refer to Prepare model

Step 3: Install the dependencies.

  • Please refer to Prepare Environment to install oneCCL.
  • Python dependencies.
    # requirements.txt in root directory.
    pip install -r requirements.txt

Step 4: Run scripts

Enter the folder corresponding to the model and run run_benchmark.sh -m <model_name>.

Please choose <model_name> as follows:

  • llama-2 (-7b,-13b,-70b)
  • llama (-7b,-13b,-30b,-65b)
  • chatglm2-6b
  • chatglm3-6b
  • chatglm-6b
  • baichuan2 (-7b,-13b)

Please choose -d or --dtype as follows:

  • bf16 (default)
  • bf16_fp16
  • int8
  • bf16_int8
  • fp16
  • bf16_int4
  • int4
  • bf16_nf4
  • nf4
  • bf16_w8a8
  • w8a8
  • w8a8_int8
  • w8a8_int4
  • w8a8_nf4

Please choose -s or --sockets as follows:

  • 1 (default, benchmarking on single socket)
  • 2 (benchmarking on 2 sockets)

Specify data type of kvcache using -kdv or --kv_cache_dtype from below list:

  • fp16 (default)
  • int8

Specify batch size using -mp or --model_path. (If not been specified, will use fake model config) Specify batch size using -tp or --token_path. (If not been specified, will use fake tokenizer config) Specify batch size using -bs or --batch_size. (default 1) Specify input tokens using -in or --input_tokens. (default 32) Specify output tokens using -out or --output_tokens. (default 32) Specify beam width using -b or --beam_width. (default 1) Specify inference iteration using -i or --iter. (default 10)

# Example of llama-2-7b with precision bf16, batch size 1, 1024 input tokens and 128 output tokens on single socket.
cd benchmark
# setup mpirun env
source ../3rdparty/oneccl/build/_install/env/setvars.sh
bash run_benchmark.sh -m llama-2-7b -d bf16 -s 1 -bs 1 -in 1024 -out 128 -i 10
  • Shell script will automatically check number of numa nodes.

  • If system configuration needs modification, please change run_benchmark.sh.

  • If you want the custom input, please modify the prompt.json file.

Notes!!!: The system and CPU configuration may be different. For the best performance, please try to modify OMP_NUM_THREADS, datatype and the memory nodes number (check the memory nodes using numactl -H) according to your test environment.

Step 4: Run distributed scripts

  • Ensure identical physical hardware, and the network is on the same subnet.
  • [Optional] Use NFS to store code and ensure a consistent environment.
  • Enable passwordless SSH between machines.
  • Maintain the IP <-> hosts mapping in each device /etc/hosts file.
bash -x run_benchmark_dist.sh