-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
99 lines (72 loc) · 3.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_groq import ChatGroq
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
groq_api_key=os.getenv('GROQ_API_KEY')
os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGroq(groq_api_key=groq_api_key,model_name="Llama3-8b-8192")
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents": docs, "question": user_question}
, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.set_page_config("Chat with PDF")
st.header("Chat with PDF using Llama3💁")
user_question = st.text_input("Ask a Question from the PDF Files uploaded",
placeholder="Can you give me a short summary?",)
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Upload your PDF Files and Click on the Submit & Process Button")
pdf_docs = st.file_uploader("PDF Uploader", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing Pdf"):
raw_text = get_pdf_text(pdf_docs)
with st.spinner("Creating chunks for Pdf"):
text_chunks = get_text_chunks(raw_text)
with st.spinner("Vector DB creating"):
get_vector_store(text_chunks)
st.success("Done")
if __name__ == "__main__":
main()