
Article

Reproducible Research in R: A Tutorial on how to Do
the Same Thing More Than Once

Aaron Peikert1,2,∗ , Caspar J. van Lissa3,4 , Andreas M. Brandmaier1,5,6

1 Center for Lifespan Psychology—Max Planck Institute for Human Development, Lentzeallee 94, 14195
Berlin, Germany;

2 Humboldt-Universität zu Berlin, Berlin, Germany;
3 Department of Methodology & Statistics—Utrecht University, Faculty of Social and Behavioral Sciences,

Utrecht, Netherlands;
4 Open Science Community Utrecht, Utrecht, Netherlands;
5 Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany, and London,

UK;
6 MSB Medical School Berlin, Berlin, Germany;
* Correspondence: peikert@mpib-berlin.mpg.de

Version November 24, 2021 submitted to Psych
����������
�������

Simple Summary: Reproducibility has long been considered integral to the scientific method. An1

analysis is considered reproducible if an independent person can obtain the same results from the2

same data. Until recently, detailed descriptions of methods and analyses were the primary instrument3

for ensuring scientific reproducibility. Technological advancements now enable scientists to achieve4

a more comprehensive standard that allows anyone to access a digital research repository and5

reproduce all computational steps from raw data to final report, including all relevant statistical6

analyses, with a single command. This method has far-reaching implications for scientific archiving,7

reproducibility and replication, scientific productivity, and the credibility and reliability of scientific8

knowledge. One obstacle to the widespread use of this method is that the underlying tools are9

complex and not part of most researchers’ basic training. This paper introduces repro, an R package10

that guides researchers through installation and use of the tools required to make a research project11

reproducible. We also suggest using the proposed workflow for the preregistration of study plans12

as reproducible computer code (Preregistration as Code; PAC). Since computer code represents13

the planned analyses exactly as they will be executed, it is more precise than natural language14

descriptions. PAC circumvents the shortcomings of ambiguous preregistrations that may result in15

undisclosed use of researcher degrees of freedom. Reproducibility, facilitated by automation, has a16

wide range of applications and could potentially accelerate scientific progress.17

Abstract: Computational reproducibility is the ability to obtain identical results from the same data18

with the same computer code. It is a building block for transparent and cumulative science because19

it enables the originator and other researchers, on other computers and later in time, to reproduce20

and thus understand how results came about while avoiding a variety of errors that may lead to21

erroneous reporting of statistical and computational results. In this tutorial, we demonstrate how the22

R package repro supports researchers in creating fully computationally reproducible research projects23

with tools from the software engineering community. Building upon this notion of fully automated24

reproducibility we present several applications including the preregistration of research plans with25

code (Preregistration as Code, PAC). PAC eschews all ambiguity of traditional preregistration and26

offers several more advantages. Making technical advancements that serve reproducibility more27

widely accessible for researchers holds the potential to innovate the research process to become more28

productive, credible, and reliable.29

Submitted to Psych, pages 1 – 33 www.mdpi.com/journal/psych

http://www.mdpi.com
https://orcid.org/0000-0001-7813-818X
https://orcid.org/0000-0002-0808-5024
https://orcid.org/0000-0001-8765-6982
mailto:peikert@mpib-berlin.mpg.de
http://www.mdpi.com/2624-8611/xx/1/5?type=check_update&version=1
http://www.mdpi.com/journal/psych

Version November 24, 2021 submitted to Psych 2 of 33

Keywords: open science; computational reproducibility; preregistration; R; R Markdown; Make;30

GitHub; Docker31

1. Introduction32

Scientists increasingly strive to make research data, materials, and analysis code openly available.33

Sharing these digital research products can increase scientific efficiency by enabling researchers to34

learn from each other, reuse materials, and increase scientific reliability by facilitating the review35

and replication of published research results. To some extent, these potential benefits are contingent36

on whether these digital research products are reproducible. Reproducibility can be defined as the37

ability of anyone to obtain identical results from the same data with the same computer code [see 1,38

for details]. The credibility of empirical research results hinges on their objectivity. Objectivity in39

this context means, “in principle it [the research finding] can be tested and understood by anybody.”40

[2, p. 22]. Only a reproducible result meets these requirements. Therefore, reproducibility has long41

been considered integral to empirical research. Unfortunately, despite increasing commitment to42

open science practices and good will, many projects can not yet be reproduced by other research43

teams [3]. This is because there are various challenges to making a research project reproducible (e.g.,44

missing software dependencies or ambiguous documentation of the exact computational steps taken),45

and there is a lack of best practices for overcoming these challenges [but see 4]. With technological46

advancement, however, it is now possible to make all digital products related to a research project47

available in a manner that enables automatic reproduction of the research project with minimal effort.48

With this paper, we pursue two aims. First, we want to introduce researchers to a notion of49

automated reproducibility that requires no manual steps, apart from the initial setup of the software50

environment. Secondly, we discuss the implications of automated reproducibility for changing the51

general approach to research. With regard to the first goal, we discuss how to address four common52

threats to reproducibility, using tools originating from software engineering [see 1, for details], and53

present a tutorial on how to employ these tools to achieve automated reproducibility. A single tutorial54

cannot comprehensively introduce the reader to the detail of individual tools, but this tutorial is55

intended to help readers get started with a basic workflow. The tutorial is aimed at researchers who56

regularly write code to analyze their data and are willing to make relevant code, data, and materials57

available, either publicly or on request. Ideally, the reader has already created a dynamic document at58

some point in time (e.g., with R Markdown or Jupyter) and used some form of version control (e.g.,59

Git). The R package repro supports researchers in setting up the required software and in adopting60

this workflow. We present automated reproducibility as a best practice; a goal that is not always61

fully achieved due to limited resources, technical restrictions, or practical considerations, but is worth62

striving for nonetheless.63

In pursuit of the second aim, we present a strictly reproducible and unambiguous form64

of preregistration [5] that builds upon implementing this reproducible workflow, the so-called65

Preregistration as Code (PAC). PAC involves preregistering the intended analysis code and the major66

part of the final scientific report as a dynamic document, including typical sections like introduction,67

methods, and results. The resulting dynamic document closely resembles the final manuscript but uses68

simulated data to generate placeholder results (e.g., figures, tables, and statistics). Simulated data serve69

two functions, they allow to test the code for the planned analyses and for preregistering the exact70

presentation of the results. Once the empirical data are available, these replace the simulated data; the71

results are then updated automatically, and the discussion can be written to finalize the report.72

Scientific organizations and funding bodies increasingly demand transparent sharing of digital73

research products, and researchers are increasingly willing to do so. However, although the sharing74

of such digital research products is a necessary condition for reproducibility, it is not a sufficient one.75

This was illustrated by an attempt to reproduce results from open materials in the journal Cognition76

Version November 24, 2021 submitted to Psych 3 of 33

[6]. Out of 35 published articles with open code and data, results of 22 articles could be reproduced,77

but in 11 of these cases, further assistance from the original authors was required. For 13 articles, at78

least 1 outcome could not be reproduced—–even with the original authors’ assistance. Another study79

of 62 Registered Reports found that only 41 had data available, and 37 had analysis scripts available80

[3]. The authors could execute only 31 of the scripts without error and reproduce the results of only81

21 articles (within a reasonable time). These failed attempts to reproduce findings highlight the need82

for widely accepted reproducibility standards because open repositories do not routinely provide83

sufficient information to reproduce relevant computational and statistical results. If digital research84

products are available but not reproducible, their added value is limited.85

This tutorial demonstrates how R users can make digital research products more reproducible,86

while striking a balance between rigor and ease-of-use. A rigorous standard increases the likelihood87

that a project will remain reproducible as long as possible. An easy-to-use standard, on the other hand,88

is more likely to be adopted. Our approach is to promote broad adoption of such practices by ensuring89

a “low threshold”, by making it easy to get started, while enabling a “high ceiling” by ensuring that90

they are compatible with more complex rigorous solutions. As researchers become more proficient in91

using the tools involved, they can thus further improve the reproducibility of their work.92

We have structured the tutorial with a learning-by-doing approach in mind, such that readers can93

follow along on their own computers. We explicitly encourage readers to try out all R commands for94

themselves. Unless stated otherwise, all code blocks are meant to be run in the statistical programming95

language R [7, tested with version 4.0.4].96

2. Threats to Reproducibility and Appropriate Remedies97

From our own experience with various research projects, we have identified the following common98

threats to reproducibility:99

1. Multiple inconsistent versions of code, data, or both; for example, the data set may have changed over100

time because outliers were removed at a later stage or an item was later recoded; or, the analysis101

code may have been modified during the writing of a paper because a bug was removed at some102

point in time. It may then be unclear which version of code and data was used to produce some103

reported set of results.104

2. Copy-and-paste errors; for example, results are often manually copied from a statistical computing105

language into a text processor; if a given analysis is re-run and results are manually updated in106

the text processor, this may inadvertently lead to inconsistencies between the reported result and107

the reproduced result.108

3. Undocumented or ambiguous order of computation; for example, with multiple data and code files, it109

may be unclear which scripts should be executed in what order; or, some of the computational110

steps are documented (e.g., final analysis), but other steps were conducted manually without111

documentation (e.g., executing a command manually rather than in a script; copy-and-pasting112

results from one program to another).113

4. Ambiguous software dependencies; for example, a given analysis may depend on a specific version of114

a specific software package, or rely on software that might not be available on a different computer,115

or no longer exist at all; or a different version of the same software may produce different results.116

We have developed a workflow that achieves long-term and cross-platform computational117

reproducibility of scientific data analyses. It leverages established tools and practices from software118

engineering and rests on four pillars that address the aforementioned causes of non-reproducibility [1]:119

1. Version control120

2. Dynamic document generation121

3. Dependency tracking122

4. Software management123

Version November 24, 2021 submitted to Psych 4 of 33

The remainder of this section briefly explains why each of these four building blocks is needed124

and details their role in ensuring reproducibility. A more extensive treatment of these tools is given in125

Peikert and Brandmaier [1].126

Version control prevents the ambiguity that arises when multiple versions of code and data are127

created in parallel during the lifetime of a research project. Version control allows a clear link between128

which results were generated by which version of code and data. This addresses the first threat to129

reproducibility, because results can only be said to be reproducible if it is clear which version of data130

and code produced them. We recommend using Git for version control, because of its widespread131

adoption in the R community.132

Git tracks changes to all project-related files (e.g., materials, data, and code) over time. At any133

stage, individual files or the entire project can be compared to, or reverted to, an earlier version.134

Moreover, contributions (e.g., from collaborators) can be compared to, and incorporated in the main135

version of the project. Version control thus reduces the risk of losing work and facilitates collaboration.136

Git is built around snapshots that represent the project state at a given point in time. These snapshots137

are called commits and work like a “save” action. Ideally, each commit has a message that succinctly138

describes these changes. It is good practice to make commits for concrete milestones (e.g., “Commented139

on Introduction,” “Added SES as a covariate,” “Address Reviewer 2’s comment 3”). This makes it140

easier to revert specific changes than when multiple milestones are joined in one commit, e.g., “Changes141

made on 19/07/2021”. Each commit refers back to its ancestor, and all commits are thus linked in a142

timeline. The entirety of commits (i.e., the version-controlled project) is called a repository. In Git,143

specific snapshots of a repository can be tagged, such that the user can clearly label which version of144

the project was used to create a preregistration, preprint, or final version of the manuscript as accepted145

by a journal. Git has additional features beyond basic version control, such as “branches” (parallel146

versions of a project that can later be merged again) to facilitate simultaneous collaboration. Vuorre and147

Curley [8] provide a more extensive treatment of how Git functions and how to use Git for research.148

Bryan [9] provides additional information on how to track R Markdown documents. Collaborating via149

Git is facilitated by uploading the repository to a cloud-based service. We recommend GitHub as a150

host for Git repositories because of its popularity among R users. GitHub has many tools that facilitate151

working with Git — in particular project management and collaboration — but these are not central to152

achieving reproducibility.153

Second, we rely on dynamic document generation. The traditional way of writing a scientific report154

based on a statistical data analysis uses two separate steps conducted in two different programs. The155

researcher writes text in a word processor, and conducts the analysis in another program. Results156

are then (manually) copied and pasted from one program to another, a process that often produces157

inconsistencies [10].158

Dynamic document generation integrates both steps. Through dynamic document generation,159

code becomes an integral, although usually hidden, part of the manuscript, complementing the verbal160

description and allowing interested readers to gain a deeper understanding of the contents [11,12]. R161

Markdown uses Markdown for text formatting and R (or other programming languages) for writing the162

statistical analysis. Markdown is a lightweight text format in plain text with a minimal set of reserved163

symbols for formatting instructions. This way, Markdown does not need any specialized software164

for editing. It is userfriendly (unlike, for example, LaTeX [13]), works well with version control165

systems, and can be exported to various document formats, such as HTML websites, a Microsoft Word166

document, a typeset PDF file (for example, via LaTeX journal templates), or a Powerpoint presentation.167

Markdown can be used for all sorts of academic documents, ranging from simple sketches of ideas to168

scientific manuscripts [14] and presentations [15], or even résumés [16]. R Markdown extends regular169

Markdown by allowing users to include R code chunks (in fact, arbitrary computer code [17, Chapter170

15, Chapter 15, Other Languages]) into a Markdown document. Upon rendering the document, the171

code blocks are executed, and their output is dynamically inserted into the document. This allows172

the creation of (conditionally) formatted text, statistical results, and figures that are guaranteed to be173

Version November 24, 2021 submitted to Psych 5 of 33

up-to-date because they are created anew every time the document is rendered to its output format (e.g.,174

presentation slides or a journal article). Xie et al. [17] provides an extensive yet practical introduction175

to most features of R Markdown.176

While version control and dynamic document generation are becoming more common, we have177

argued that two more components are required and that each component alone is unlikely to guarantee178

reproducibility [1,4]. In practice, dependencies between project files (e.g., information on what script179

uses which data file and what script needs to be run first) or on external software (e.g., system libraries180

or components of the programming language, such as other R packages) are frequently unmentioned181

or not exhaustively and unambiguously documented.182

Dependency tracking helps automatically resolve dependencies between project files. In essence,183

researchers provide a collection of computational recipes. A computational recipe describes how inputs184

are processed to deterministically create a specific output in a way that is automatically executable. The185

concept of computational recipes is central to our understanding of reproducibility because it enables a186

unified way to reproduce a project automatically. Similar to a collection of cooking recipes, we can have187

multiple products (targets) with different ingredients (requirements) and different steps of preparation188

(recipes). In the context of scientific data analysis, targets are typically the final scientific report (e.g.,189

the one to be submitted to a journal) and possibly intermediate results (such as preprocessed data190

files, simulation results, and analysis results). A workflow that involves renaming variable names by191

hand in a graphical spreadsheet application, for example, is therefore incompatible with automated192

reproducibility. Another property of a computational recipe is that the same inputs should always193

result in the same outputs. For most computer code (given the same software is used), this property is194

fulfilled. However, one noteworthy exception is the generation of pseudo-random numbers. Whenever195

random numbers are used in a computation, it is only reproducible if the random number generator196

generates the same numbers. To ensure identical random numbers, users may fix the state of the197

random number generated with a so-called seed (e.g. set.seed() in R), but they also need to guarantee198

that the pseudo-random number generator is unchanged [see 1].199

We recommend using Make for dependency tracking because it is language independent. The200

following hypothetical example illustrates the utility of Make and a suitable Makefile. Consider a201

research project that contains a script to simulate data (simulate.R) and a scientific report of the202

simulation results written in R Markdown (manuscript.Rmd). A Makefile for this project could look203

like this:204

1 manuscript.pdf: manuscript.Rmd simulated_data.csv

2 Rscript -e 'rmarkdown::render("manuscript.Rmd")'

3

4 simulated_data.csv: simulate.R

5 Rscript -e 'source("simulate.R")'

There are two targets, the final rendered report (manuscript.pdf, l. 1) and the simulation results205

(simulation_results.csv, l. 4). Each target is followed by a colon and a list of requirements. If a206

requirement is newer than the target, the recipe will be executed to rebuild the target. If a requirement207

does not exist, Make uses a recipe to build the requirement before building the target. Here, if one were208

to build the final manuscript.pdf by rendering the R Markdown with the command shown in l.2, Make209

would check whether the file simulation_results.csv exists; if not, it would issue the command210

in l.5 to run the simulation before rendering the manuscript. This ensures that the simulated data211

are present before the manuscript is built, and that the simulation is re-run and the manuscript is212

rebuilt if the simulation code was changed. Make therefore offers a standardized process to reproduce213

projects, regardless of the complexity or configuration of the project. Note that the Workflow for Open214

Reproducible Code in Science (WORCS) we presented elsewhere [4] does not explicitly contain this215

dependency tracking element, but its strict structure of only containing one definite R Markdown still216

makes dependencies between files unambiguous.217

Version November 24, 2021 submitted to Psych 6 of 33

A version-controlled dynamic document with dependency tracking still relies on external software.218

Troubleshooting issues specific to a particular programming language or dependent tool typically219

require considerable expertise and threaten reproducibility. Software management refers to the act of220

providing records of, or access to, all software packages and system libraries a project depends on.221

One comprehensive approach to software management is containerization. The central idea is that by222

“[..] packaging the key elements of the computational environment needed to run the desired software223

[makes] the software much easier to use, and the results easier to reproduce [. . .]” [18, p. 174].224

Docker is a popular tool for containerization. It manages software dependencies by constructing a225

virtual software environment independent of the host software environment. These so-called “Docker226

images” function like a virtual computer (i.e., a “sand box” a computational environment seperated227

from the host). A Docker image contains all software dependencies used in an analysis—not just R228

packages, but also R and Rstudio, and even the operating system. This is important because low229

level functionality may impact the workings of higher-order software like R, such as calls to random230

number generators or linear algebra libraries. All of the differences in computational results that could231

be caused by variation in the software used are hence eliminated.232

Note that the software environment of the Docker image is completely separate from the software233

installed on your computer. This separation is excellent for reproducibility but takes some getting234

used to. For example, it is important to realize that software available on your local computer will not235

be accessible within the confines of the Docker image. Each dependency that you want to use within236

the Docker image must be explicitly added as a dependency. Furthermore, using Docker may require237

you to install software on an operating system that may not be familiar to you. The images supplied238

by the rocker project [19], for example, are based on Linux.239

There are two ways to build a Docker image. First, users can manually install whatever software240

they like from within the virtual environment. Such a manually build environment can still be241

ported to all computers that support Docker. However, we prefer the second way of building images242

automatically from a textual description called Dockerfile. Because the Dockerfile clearly describes243

how which software is installed, the installation process can be repeated automatically. Users can244

therefore quickly change the software environment, for example, update to another R version or given245

package version. Packaging all required software in such an image requires considerable amounts of246

storage space. Two major strategies help to keep the storage requirements reasonable. One is to rely on247

pre-made images that are maintained by a community for particular purposes. For example, there are248

pre-made images that only include what is necessary for R, based on Ubuntu containers [19]. Users249

can then install whatever they need in addition to what is provided by these pre-compiled images.250

The image that was used for this article uses 1.35GiB of disk space. The image for this project includes251

Ubuntu, R, RStudio, LaTeX as well as a variety of R packages like tidyverse [20] and all its dependent252

packages, amounting to 192 R packages.253

A second strategy is to save a so-called Dockerfile, which contains only a textual description of254

all commands that need to be executed to recreate the software environment. Dockerfiles are tiny255

(the Dockerfile for this project has a size of only 1.55KiB). However, they rely on the assumption256

that all software repositories that provide the dependent operating systems, pieces of software, and257

R packages will continue to remain accessible and provide historic software versions. For proper258

archiving, we therefore recommend storing a complete image of the software environment, in addition259

to the Dockerfile. A more comprehensive overview of the use of containerization in research projects260

is given by Wiebels and Moreau [21]. Note that WORCS, which we presented elsewhere [4] relies on261

the R package renv [22] for software management. renv is more lightweight and easier to use than262

Docker on the one hand, but not as comprehensive on the other because it only takes snapshots of the263

R packages instead of all software used.264

To summarize, the workflow by Peikert and Brandmaier [1] requires four components (see Figure265

2.1) dynamic document generation (using R Markdown), version control (using Git), dependency266

tracking (using Make), and software management (using Docker). While R Markdown and Git are well267

https://github.com/aaronpeikert/repro-tutorial/blob/main/Dockerfile

Version November 24, 2021 submitted to Psych 7 of 33

Docker
documents software

environment

R Markdown
generates dynamic

documents

Git
tracks

versions

Make
manages

dependencies

data/

iris_prepped.csv
...

iris.csv

LICENSE.md

Dockerfile

Makefile

manuscript.pdf

R/

manuscript.Rmd

...

...

prepare_data.R

reproducible.Rproj

.git/

.gitignore

T
im

e

B depends on A

=
BA

Virtual Linux

Operating system

LaTex

Packages

R version

Some
software

manuscript.pdf

Some text.

Petal.Length

P
et

al
.W

id
th

Figure 2.1: Schematic illustration of the interplay of the four components (in dashed columns) central to
the reproducible workflow: version control (Git), dependency tracking (Make), software management
(Docker), and dynamic document generation (R Markdown). Git tracks changes to the project over time.
Make manages dependencies among the files. Docker provides a container in which the final report is
built using dynamic document generation in R Markdown. Adapted from Peikert and Brandmaier [1]
licensed under CC BY 4.0.

integrated into the R environment through RStudio, Make and Docker require a level of expertise that268

is often beyond the training of scholars outside the field of information technology. This presents269

a considerable obstacle to the acceptance and implementation of the workflow. To overcome this270

obstacle, we have developed the R package repro that supports scholars in setting up, maintaining,271

and reproducing research projects in R. Importantly, a reproducible research project created with repro272

does not have the repro package itself as a dependency. These projects will remain reproducible273

irrespective of whether repro remains accessible in future. Users do not need to have repro installed274

to reproduce a project; in fact, they do not even need to have R installed because the entire project can275

be rebuilt inside a container with R installed. In the remainder, we will walk you through the creation276

of a reproducible research project with the package repro.277

3. Creating Reproducible Research Projects278

One impediment to the widespread adoption of a standard for reproducible research is that279

learning to use the required tools can be quite time-intensive. To lower the threshold, the R package280

repro introduces helper functions that simplify the use of complicated and powerful tools. The repro281

package follows the format of the usethis [23] package, which provides helper functions to simplify282

the development of R packages. The repro package provides similar helper functions, but focuses on283

reproducibility-specific utilities. These helper functions guide end-users in the use of reproducibility284

tools, provide feedback about what the computer is doing and suggest what the user should do next.285

We hope this makes reproducibility tools more accessible by enabling beginner-level users to detect286

their system’s state accurately and act correspondingly [24, Chapter 8: “Automation and Situation287

Awareness”]. These wrappers are merely a support system; as users learn to use the underlying tools,288

they can rely less on repro and use these tools directly to solve more complex problems.289

This tutorial assumes that the user will be working predominantly in R, with the help of RStudio.290

It describes basic steps that we expect to be relevant for small-scale psychological research projects291

that do not rely on external software or multistage data processing (for those requirements see section292

https://creativecommons.org/licenses/by/4.0
https://usethis.r-lib.org

Version November 24, 2021 submitted to Psych 8 of 33

Advanced Features). Of course, your specific situation might involve additional, more specialized293

steps. After completing the tutorial, you should be able to customize your workflow accordingly.294

The first step is to install the required software. We assume that you have installed R [7, version295

4.0.4] and RStudio [25, version 1.4] already but the tutorial will guide you in detail through the296

installation of other necessary software with the help of the R package repro [26]. In case you have297

either not installed R and RStudio or are unsure if they are up-to-date, you might want to consult our298

installation advice in the Online Supplementary Material that covers the installation of all software299

necessary for this tutorial in three steps. The installation advice may also help Windows users who300

have problems installing Docker.301

Unfortunately, Docker requires administrator rights to run, which may not be available to all302

researchers. We recommend renv [22] in cases where no administrator rights can be obtained but can303

not detail its use in this document. renv tracks which R package is installed from which source in304

which version in a so-called lockfile. This lockfile is then used to reinstall the same packages on305

other computers or later in time. For a more thorough discussion, see van Lissa et al. [4].306

Start RStudio and install the package repro[26]. It will assist you while you follow the tutorial.307

1 # repro is not on CRAN yet

2 options(

3 repos = c(aaronpeikert = 'https://aaronpeikert.r-universe.dev',

4 CRAN = 'https://cloud.r-project.org')

5)

6 install.packages('repro')

To verify that you have indeed installed and set up the required software for this workflow,308

you can use the “check functions”. These also illlustrate how repro assists the user in setting up a309

reproducible workflow. In the example below, we use the double-colon operator to explicitly indicate310

which functions originate in the repro package. If the package is loaded (using library("repro")), it311

is not necessary to use this double-colon notation.312

1 # `package::function()` � use function from package without `library(package)`

2 repro::check_git()

v Git is installed, don't worry.313

1 repro::check_make()

v Make is installed, don't worry.314

1 repro::check_docker()

v Docker is installed, don't worry.315

These functions check whether specific dependencies are available on the user’s system, and if316

not, explain what further action is needed to obtain it. Sometimes they ask the user to take action; for317

example, the following happens if you are a Windows user who does not have Git installed:318

1 repro::check_git()

x Git is not installed.319

i We recommend Chocolately for Windows users.320

https://github.com/aaronpeikert/repro
https://github.com/aaronpeikert/repro-tutorial/blob/main/install.md
(https://github.com/aaronpeikert/repro-tutorial/blob/main/install.md)
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/lockfile.html
https://github.com/aaronpeikert

Version November 24, 2021 submitted to Psych 9 of 33

x Chocolately is not installed.321

* To install it, follow directions on:322

'https://chocolatey.org/docs/installation'323

i Use an administrator terminal to install chocolately.324

* Restart your computer.325

* Run `choco install -y git` in an admin terminal to install Git.326

The messages from repro try to help the user solve problems. They are adjusted to your specific327

operating system and installed dependencies. Before you continue, we ask you to run the above328

commands to check Git, Make, and Docker—both to become familiar with the functionality of the329

check_*() functions and to make sure your system is prepared for the remainder of this tutorial.330

After you have installed the necessary software, we suggest that you set up a secure connection331

to GitHub:332

1 repro::check_github()

v You and GitHub are on good terms, don't worry.333

If you know what Secure Shell (SSH) is and want to use it, you may alternatively use:334

1 # only an alternative: DO NOT USE if you are unsure what SSH means

2 repro::check_github(auth_method = "ssh")

v You and GitHub are on good terms, don't worry.335

If necessary, follow any instructions presented until all checks are passed.336

3.1. Creating an RStudio Project337

We start by creating a project folder with RStudio by clicking the menu item:338

File� New Project. . . � New Directory� Example Repro Template339

This creates a project with a sample analysis. This sample analysis consists of a single R Markdown340

document and a single data file. The only special thing about the R Markdown document is the repro341

metadata that we will learn later about. However, you may turn any other template or existing R342

project into a reproducible research project by adding those repro metadata there.343

3.2. Implementing Version Control344

Now that your project is set up, we will introduce you to version control with Git. Git does345

not automatically track all files in your project folder; rather, you must manually add files to the346

Git repository. To make sure you do not accidentally add files that you do not wish to share (e.g.,347

privacy-sensitive data), you can list specific files that you do not want to track in the .gitignore file.348

You can also block specific filetypes; for example, to prevent accidentally sharing raw data. You can349

add something to the .gitignore file directly or with this command:350

1 usethis::use_git_ignore("private.md")

Version November 24, 2021 submitted to Psych 10 of 33

Figure 3.1: The Git pane in R Studio, showing manuscript.Rmd modified but unstaged and
modified.png newly added and staged.

Now the file private.md will not be added to the Git repository, and hence also not be made351

public if you push the repository to a remote service like GitHub. Please also consider carefully352

whether you can include data in the repository without violating privacy rights. If you are not allowed353

to share your data publicly, add the data file(s) to the .gitignore file and only share them on request.354

New users are advised to explicitly exclude any sensitive files before proceeding. When you are355

ready, you can begin tracking your remaining files using Git by running:356

1 usethis::use_git()

For Git to recognize changes to a given file, you have to stage and then commit these changes357

(this is the basic save action for a project snapshot). One way to do this is through the visual user358

interface in the RStudio Git pane (see Figure 3.1). Click on the empty box next to the file you want359

to stage. A checkmark then indicates that the file is staged. After you have staged all of the files you360

want, click on the commit button, explain in the commit message why you made those changes, and361

then click on commit. This stores a snapshot of the current state of the project.362

The files you created and the changes you made have not yet left your computer. All snapshots363

are stored in a local repository in your project folder. To back up and/or share the files online, you can364

push your local repository to a remote repository. While you can choose any Git service (like GitLab365

or BitBucket), we will use GitHub in this tutorial. Before you upload your project to GitHub, you need366

to decide whether you would like the project to be publicly accessible (viewable by anyone, editable367

by selected collaborators) or if you want to keep it private (only viewable and editable by selected368

collaborators). To upload the project publicly to GitHub use:369

1 usethis::use_github()

To upload it privately:370

1 usethis::use_github(private = TRUE)

Depending on your computer’s configuration, it may ask you to set up a secure connection to371

GitHub. In this case, first, follow the suggestions shown on the R console.372

3.3. Using Dynamic Document Generation373

Now that you have created a version-controlled project, we will proceed with dynamic document374

generation. A dynamic document has three elements:375

1. Text (prose; e.g., a scientific paper or presentation)376

2. Executable code (e.g., analyses)377

3. Metadata (e.g. title, authors, document format)378

R Markdown is a type of dynamic document well-suited to the RStudio user interface. The text of379

an R Markdown is formatted by Markdown (see [27] for technical details and [17] for practical guidance).380

Version November 24, 2021 submitted to Psych 11 of 33

The code mostly consists of R code (although other programming languages are supported, like Python,381

C++, Fortran, etc). The following example serves to illustrate the Markdown syntax. It shows how to382

create a heading, a word in bold font, a citation, and a list of several items in Markdown:383

1 <!--this is a Markdown file -->

2 # Heading (level 1)

3

4 Normal text.

5 Important **word** in bold.

6 A citation: @einstein1935 did important research on this topic.

7

8 ## Subheading (level 2)

9

10 To do list:

11

12 * Do research

13 * Do more research

14 * Spend time with family and friends

One advantage of this type of markup for formatting is that it can be rendered to many different384

output formats—both in terms of file types, like .docx, .html, .pdf, and in terms of style, e.g. specific385

journal requirements. For social scientists, the papaja package [28] may be relevant, as it produces386

manuscripts that follow the American Psychological Association formatting requirements [29]. R387

Markdown files are plain text, which is more suitable for version control using Git than binary files388

generated by some word processors. Some users might find it easier to activate the “Visual Editor” of389

RStudio ([Ctrl] + [Shift] + [F4] or click on the icon that resembles drawing materials or a compass in390

the upper right corner of the R Markdown document), which features more graphical elements like a391

traditional word processor but still creates an R Markdown underneath with all of its flexibility. The392

visual editor has some additional benefits, such as promoting best practices (for example, each sentence393

should be written on a new line, which makes it easier to track changes across versions) and improving394

the generation of citations and references to tables and figures.395

Now that you are familiar with Markdown formatting basics, we turn our attention to including396

code and its results in the text. Code is separated by three backticks (and the programming language397

in curly brackets) like this:398

1 This is normal text, written in Markdown.

2

3 ```{r}

4 # this is R code

5 1 + 1

6 ```

The hotkey [Control]+[Alt]+[i] inserts a block of code in the file. The results of code enclosed399

in such backticks will be dynamically inserted into the document (depending on specific settings).400

This means that whenever you render the R Markdown to its intended output format, the code will be401

executed and the results updated. The resulting output document will be static, e.g., a pdf document,402

and can be shared wherever you like, e.g., on a preprint server.403

Once the R Markdown file has been rendered to a static document (the output, e.g., PDF), the404

resulting file is decoupled from the R Markdown and the code that created it. This introduces a risk405

that multiple versions of the static document are disseminated, each with slightly different results. To406

avoid ambiguity, we, therefore, recommend referencing the identifier of the Git commit at the time of407

https://github.com/crsh/papaja

Version November 24, 2021 submitted to Psych 12 of 33

rendering in the static document. Simply put, a static document should link to the version of the code408

that was used to create it. The repro package comes with the function repro::current_hash() for409

this purpose. This document was created from the commit with the hash a8bb0d4 (view on GitHub).410

Now that you know how to write text and R code in an R Markdown, you need to know about411

metadata (also called: YAML front matter). These metadata contain information about the document,412

like the title and the output format. Metadata are placed at the beginning of the document and are413

separated from the document body by three dashes. The following example is a full markdown414

document where the metadata (the “YAML front matter”) are in lines 1–6. Some metadata fields are415

self-explanatory (like the author field), and exist across all output formats (like the title field). Others416

are specific to certain output formats or R packages.417

1 ---

2 title: "A Tutorial on how to Do the Same Thing More Than Once"

3 author: Aaron Peikert, Caspar J. van Lissa, and Andreas M. Brandmaier

4 abstract: A hitchhiker's guide to reproducible research in R

5 output: html_document

6 ---

7

8 # Introduction

9

10 Important for reproducibility:

11

12 1. *Version control*

13 2. *Dynamic document creation*

14 3. *Dependency tracking*

15 4. *Software management*

16

17 ```{r}

18 # this is R code

19 t.test(extra ~ group, data = sleep)

20 ```

3.4. Manage Software and File Dependencies418

The repro package adds fields to the metadata to list all dependencies of the research project.419

This includes R scripts, data files, and external packages. The format is as follows (see everything420

below the line repro:):421

1 ---

2 title: "A tutorial on how to do the same thing more than once"

3 author: Aaron Peikert, Caspar J. Van Lissa and Andreas M. Brandmaier

4 output: html_document

5 repro:

6 scripts:

7 - R/load.R

8 data:

9 - data/mtcars.csv

10 packages:

11 - tidyverse

12 - usethis

13 - gert

14 ---

https://github.com/aaronpeikert/repro-tutorial/tree/a8bb0d4df4afa4f7dbb5cd2344ae16043cb8a99d

Version November 24, 2021 submitted to Psych 13 of 33

This information clarifies what dependencies (in the form of files and R packages) a project relies422

on. repro uses this information to construct a Makefile for the dependencies on other files and a423

Dockerfile that includes all required packages. Together, these two files form the basis for consistency424

within a research project and consistency across different systems. The function repro::automate()425

converts the metadata from all R Markdown files in the project (all files with the ending .Rmd) to a426

Makefile and a Dockerfile. These files allow users (including your future self) to reproduce every427

step in the analysis automatically. Please run repro::automate() in your project:428

1 repro::automate()

It is important to re-run repro::automate() whenever you change the repro metadata, change429

the output format, or add a new R Markdown file to the project to keep the Makefile and Dockerfile430

up to date. There is no harm in running it too often. Other than the Makefile and the Dockerfile,431

which are created in the document root path, repro generates a few more files in the .repro directory432

(which we will explain in detail later), all of which you should add and commit to Git.433

3.5. Reproducing a project434

If someone (including you) wants to reproduce your project, they first have to install the required435

software, that is Make, and Docker. Remember, you can use the check_*-functions to test if these are436

installed:437

1 repro::check_make()

v Make is installed, don't worry.438

1 repro::check_docker()

v Docker is installed, don't worry.439

When these are set up, they can ask repro to explain how they should use Make and Docker to440

reproduce the project (or you could explain it to them):441

1 repro::reproduce()

* To reproduce this project, run the following code in a terminal:442

make docker &&443

make -B DOCKER=TRUE444

If you feel uncomfortable using the terminal directly, you can send the command to the terminal445

from within R:446

1 system(repro::reproduce())

The only “hard” software requirement for reproducing a project is Docker, assuming users know447

how to build a Docker image and run Make within the container. However, if they have installed Make448

in addition to Docker, they do not even need to know how to use Docker and can simply rely on the449

two Make commands “make docker” and “make -B DOCKER=TRUE”.450

3.6. Summary451

1. Install the repro package:452

Version November 24, 2021 submitted to Psych 14 of 33

1 options(

2 repos = c(aaronpeikert = 'https://aaronpeikert.r-universe.dev',

3 CRAN = 'https://cloud.r-project.org')

4)

5 install.packages('repro')

2. Check the required software:453

1 repro::check_git()

v Git is installed, don't worry.454

1 repro::check_github()

v You and GitHub are on good terms, don't worry.455

1 repro::check_make()

v Make is installed, don't worry.456

1 repro::check_docker()

v You are inside a Docker container!457

3. Create an R project or use an existing one. Do not forget to add repro metadata (i.e., packages,458

scripts, data).459

1 repro:

2 scripts:

3 - R/load.R

4 data:

5 - data/mtcars.csv

6 packages:

7 - tidyverse

The sample repro project already has theese metadata:460

1 repro::use_repro_template("/some/folder")

4. Let repro generate Docker- and Makefile:461

1 repro::automate()

5. Enjoy automated reproducibility:462

1 repro::reproduce()

* To reproduce this project, run the following code in a terminal:463

make docker &&464

make -B DOCKER=TRUE465

Version November 24, 2021 submitted to Psych 15 of 33

4. Advanced Features466

This section is for advanced users who want to overcome some limitations of repro. If you read467

this paper the first time, you will probably want to skip this section and continue reading from the468

section “Preregistration as Code.” As explained above, repro is merely a simplified interface to the469

tools that enable reproducibility. This simplified interface imposes two restrictions. Users who ask470

themselves either, “How can I install software dependencies outside of R in the Docker image?” or471

“How can I express complex dependencies between files (e.g., hundreds of data files are preprocessed472

and combined)?” need to be aware of these restrictions and require a deeper understanding of the473

inner workings of repro. Other users may safely skip this section or return to it if they encounter such474

challenges.475

The first restriction is that users must rely on software that is either already provided by476

the base Dockerimage “rocker/verse” or the R packages they list in the metadata. The metadata477

the repro::automate() function relies on can only express R packages as dependencies for the478

Dockerfile and only trivial dependencies (in the form of “file must exist”) for the Makefile. Other479

software that users might need, like other programming languages, not yet installed LaTeX packages,480

etc., must be added manually. We plan to add support for commonly used ways to install software481

beyond R packages via the metadata and repro::automate(), for example, for system libraries (via482

apt the Ubuntu package manager), LaTeX packages (via tlmgr the Tex Live package manager), Python483

packages (via pip the python package manager). The second limitation is related to dependencies.484

Make can represent complex dependencies, for example: A depends on B, which in turn depends on485

C and D. If B is missing in this example, Make would know how to recreate it from C and D. These486

dependencies, and how they should be resolved, are difficult to represent in the metadata. Users,487

therefore, have to either “flatten” the dependency structure by simply stating that A depends on B,488

C, and D, thereby leaving out important information or express the dependencies directly within the489

Makefile.490

The following section explains how to overcome these limitations despite reliance on the491

automation afforded by repro. Lifting these restrictions requires the user to interact more directly with492

Make or Docker. Users need to understand how repro utilizes Make and Docker internally to satisfy493

more complicated requirements.494

Let us have a closer look at the command for reproducing a repro project: make docker &&495

make -B DOCKER=TRUE; which consists of two processing steps. First, it recreates the virtual software496

environment (Docker), and then it executes computational recipes in the virtual software environment497

(Make). The first step is done by the command make docker. The command make docker will trigger498

Make to build the target called docker. The recipe for this target builds an image from the Dockerfile499

in the repository. The && concatenates both commands and only runs the second command if the first500

is successful. Therefore, the computational steps are only executed when the software environment501

is set up. The second step executes the actual reproduction and is again a call to Make in the form of502

make -B DOCKER=TRUE with three noteworthy parts. First, a call to make without any explicit target503

will build the Make target all. Second, the flag -B means that Make will consider all dependencies as504

outdated and will hence rebuild everything. Third, repro constructs Make targets so that if you supply505

DOCKER=TRUE they are executed within the Docker image of the project.506

The interplay between Docker and Make resembles a chicken or egg problem. We have507

computational steps (Make) that depend on the software environment (Docker) for which we again have508

computational steps that create it. Users only require a deeper understanding of this interdependence509

when they either want to have more complex computational recipes than rendering an R Markdown or510

require other software than R packages.511

Users can have full control over the software installed within the image of the project. repro512

creates three Dockerfiles inside the .repro directory. Two Dockerfiles are automatically generated.513

The first is .repro/Dockerfile_base. It contains information about the base image on which all the514

remaining software is installed. By default we rely on the “verse” images provided by the Rocker515

Version November 24, 2021 submitted to Psych 16 of 33

project [19]. These contain (among other software) the packages tidyverse, rmarkdown, and a complete516

LaTeX installation, which makes these images ideal for the creation of scientific manuscripts. Users can517

choose which R version they want to have inside the container by changing the version number in line518

1 to the desired R version number. By default, the R version corresponds to the locally installed version519

on which repro::automate() was called the first time. The build date is used to install packages in520

the version that was available on the Comprehensive R Archive Network on this specific date and can521

also be changed. By default, this date is set to the date on which repro::automate() was called the522

first time. This way, the call to the automate function virtually freezes the R environment to the state it523

was called the first time inside the container. Below, you see the Docker base file we used to create this524

manuscript:525

1 FROM rocker/verse:4.0.4

2 ARG BUILD_DATE=2021-05-06

3 WORKDIR /home/rstudio

The second automatically generated Dockerfile is .repro/Dockerfile_packages. Whenever526

repro::automate() is called, repro gathers all R packages from all .Rmd files and determines whether527

they should be installed from CRAN or GitHub fixed to the date specified in Dockerfile_base. Finally,528

there is one manually edited Dockerfile: .repro/Dockerfile_manual. It is blank by default and can529

be used to add further dependencies outside of R, like system libraries or external software. Using530

Docker may require you to install software on an operating system that may not be familiar to you.531

The images supplied by [19], for example, are based on the Ubuntu operating system. The most532

convenient way to install software on Ubuntu is through its package manager apt. If the following533

snippet is added to .repro/Dockerfile_manual, the Docker image will have, for example, Python534

installed. Other software is installed identically, only the software name is exchanged.535

1 RUN apt-get update && apt-get install -y python3

Docker eventually requires a single Dockerfile to run, so repro::automate() simply536

concatenates the three Dockerfiles and saves the result into the main Dockerfile at the top level of the537

R project. With this approach, users of repro can build complex software environments and implement538

complex file dependencies. The standard repro metadata only make sure that all dependencies are539

available but does not allow you to specify custom recipes for them in the metadata. If you can540

formulate the creation of dependencies in terms of computational steps, e.g. the file data/clean.csv541

is created from data/raw.csv by script R/preprocess.R, you should include these in the Makefile.542

The Makefile that repro creates is only a template, and you are free to change it. However, make sure543

you never remove the following two lines:544

1 include .repro/Makefile_Rmds

2 include .repro/Makefile_Docker

The file .repro/Makefile_Rmds contains the automatically generated targets from545

repro::automate() for the R Markdown files. This file should not be altered manually. If you546

are not satisfied with the automatically generated target, simply provide an alternative target in the547

main Makefile. Targets in the main Makefile take precedent.548

The file .repro/Makefile_Docker does again contain a rather complicated template that you549

could, but should usually not modify. This Makefile coordinates the interplay between Make and550

Docker and contains targets for building (with make docker) and saving (with make save-docker)551

the Docker image. Additionally, it provides facilities to execute commands within the container. If you552

write a computational recipe for a target, it will be evaluated using the locally installed software by553

default. To evaluate commands inside the Docker image instead, you should wrap them in $(RUN1)554

Version November 24, 2021 submitted to Psych 17 of 33

command $(RUN2), as done in this example, which is identical to the first Make example we gave above555

except for the addition of $(RUN1) and $(RUN2) in l. 2:556

1 simulated_data.csv: R/simulate.R

2 $(RUN1) Rscript -e 'source("R/simulate.R")' $(RUN2)

If users execute this in the terminal:557

1 make data/simulation_results.csv

It behaves exactly as in the first Make example, the script R/simulate.R is run using the locally558

installed R. Because this translates simply to:559

1 Rscript -e 'source("R/simulation.R")'

But if users use560

1 make DOCKER=TRUE data/simulation_results.csv

it is evaluated within the Docker container using the software within it and not the locally installed561

R version:562

1 docker run --rm --user 1000 -v "/home/rstudio":"/home/rstudio/"

2 reprotutorial Rscript -e 'source("R/simulate.R")'

To summarize, repro automates dependency tracking (in the form of Make) and software563

management (using Docker) without the necessity to learn both tools, but users with advanced564

requirements can still customize all aspects of both programs.565

5. Preregistration as Code566

Preregistration refers to the practice of defining research questions and planning data analysis567

before observing the research outcomes [5]. It serves to separate a-priori planned and theory-driven568

(confirmatory) analyses from unplanned and post-hoc (exploratory) analyses. Researchers are faced569

with a myriad of choices in designing, executing, and analyzing a study, often called researchers570

degrees of freedom. Undisclosed researcher degrees may be used to modify planned analyses until a571

key finding reaches statistical significance or to inflate effect size estimates, a phenomenon referred to572

as opportunistic bias [30]. Preregistration increases transparency by clarifying when and how researchers573

employ their degrees of freedom. It expressly does not restrict what researchers may do to gather or574

analyze their data.575

There are still several shortcomings to preregistration. One is that written study plans are often576

interpretable in multiple ways. Empirical research has shown that, even when several researchers577

describe their analysis with the same terms, use the same data, and investigate the same hypothesis,578

their results vary considerably [31]. The current best practice to ensure comprehensive and specific579

preregistration is to impose structure by following preregistration templates [32,33]. However, such580

templates cannot ensure full transparency because it is impossible to verbally describe every detail of581

an analysis for any but the most straightforward analysis. This ambiguity causes a second problem,582

namely, comparing the initial plan and the resulting publication to decide if and how researchers583

deviated from the preregistration. This task is difficult because it is impossible to decide without584

additional information weather the analysis was actually carried out differently or just described585

differently. Even if researchers were faithful to the preregistration, readers may reach opposite586

conclusions because they have to compare two different text that may be worded differently or describe587

the same thing in varying levels of detail. A third limitation is that preregistrations are susceptible to588

Version November 24, 2021 submitted to Psych 18 of 33

non-reproducibility, just like primary research. To illustrate, a review of 210 preregistrations found that,589

even though 174 (67%) included a formal power analysis, only 34 (20%) of these could be reproduced590

[34]. Even when researchers have gone to great lengths in preregistering an analysis script, they591

sometimes inexplicably fail to reproduce their own results. For example, Steegen et al. [35] realized592

after publication that part of their preregistered code resulted in different test statistics than they593

reported initially (see their Footnote 7). A final limitation is that written plans may turn out to be594

unfeasible once data are obtained and analyzed. For example, a verbal description of a statistical595

model may be unidentified, e.g., if it includes reciprocal paths between variables or more parameters596

than observed data. Conversely, a model may be misspecified in a major way; for example, by597

omitting direct effects when the research question is about mediation, thus leading to a model with an598

unacceptable fit. Many researchers would only realize that such a model cannot be estimated once the599

data are obtained, thus necessitating a deviation from the preregistered plans.600

The workflow described in this paper facilitates a rigorous solution to this problem: Instead of601

describing the analysis in prose, researchers include the code required to conduct the analysis in the602

preregistration. We term this approach of writing and publishing code at the preregistration stage603

Preregistration as Code (PAC). PAC has the potential to eliminate undisclosed researchers degrees of604

freedom to a much greater extent than, e.g., preregistration templates. Moreover, it reduces overhead605

by removing the need to write a separate preregistration and manuscript. For PAC, researchers can606

write a reproducible, dynamically generated draft of their intended manuscript at the preregistration607

stage. This already includes most of the typical sections, such as introduction, methods, and results.608

These results are initially based on simulated data with the same structure as the data the authors609

expect to obtain from their experiments. For guidance on how to simulate data, see Morris et al. [36],610

Paxton et al. [37], and Skrondal [38], as well as the R packages simstudy, [39] and psych, [40].611

Once the preregistration is submitted and real data have been collected or made available, the612

document can be reproduced with a single command, thus updating the Results section to the final613

version. Reproducibility is of utmost importance at this stage since the preregistration must produce614

valid results at two points in time, once before data collection and once after data collection. As outlined615

before, reproducibility builds upon four pillars (version control, dynamic document generation,616

dependency tracking, and software management). To use PAC the dangers to reproducibility we617

described must be eliminated.618

The idea of submitting code as part of a preregistration is not new [e.g. 41]. A619

prominent preregistration platform, The Open Science Framework, suggests submitting620

scripts alongside the preregistration of methods. In an informal literature search621

(we skimmed the first 300 results of Google Scholar with the keywords ("pre622

registration"|"pre-registration"|preregistration)&(code|script|matlab|python|"R"))623

we only found close to a dozen published articles that did include some form of script as part of their624

preregistration. Though the notion of preregistering code has been around for a while [cf. 35], it has625

not gained much traction—perhaps because, to date, this has constituted an extra non-standard step in626

the research process. This tutorial integrates the preregistration of code into the reproducible research627

workflow by encouraging researchers to preregister the whole manuscript as a dynamic document.628

5.1. Advantages of PAC Over Traditional Preregistration629

We believe that pairing PAC with the workflow presented above offers five advantages over630

classical preregistration. First, PAC is merely an intermediate stage of the final manuscript, thus631

sparing authors from writing, and editors and reviewers from evaluating, two separate documents.632

Relatedly, writing the preregistration in the form of a research article has the advantage that researchers633

are usually familiar with this format. By contrast, a preregistration template is a novelty for many.634

Second, PAC is a tool for study planning. A study can be carried out more efficiently if all steps are635

documented clearly than when every step is planned ad hoc. Third, PAC removes ambiguity regarding636

the translation of verbal analysis plans into code. PAC is more comprehensive by design because its637

https://cran.r-project.org/web/packages/simstudy/vignettes/simstudy.html
https://personality-project.org/r/psych/help/sim.html
https://osf.io/

Version November 24, 2021 submitted to Psych 19 of 33

completeness can be empirically checked with simulated data. Evaluating the intended analysis code638

on simulated data will help identify missing steps or ambiguous decisions. PAC, therefore, minimizes639

undisclosed researchers degrees of freedom more effectively than standard preregistration does [33,41].640

Fourth, despite its rigor, PAC accommodates data-dependent decisions if these can be formulated as641

code. Researchers can, for example, formulate conditions (e.g., in the form of if-else-blocks) under642

which they prefer one analysis type over the other. For example, if distributional assumptions are643

not met, the code may branch out to employ robust methods; or, an analysis may perform automated644

variable selection mechanisms before running the final model. Another example of data-dependent645

decisions are more explorative analyses, i.e. explorative factor analysis or machine learning. Decisions646

that do not lend themselves to formulation in code, e.g. visual inspection, must still be described647

verbally or be treated as noted in the next section. Fifth, deviations from the preregistration are clearly648

documented because they are reflected in changes to the code, which are managed and tracked with649

version control.650

5.2. Deviating from the Preregistration and Exploration651

We would like to note that PAC allows explicit comparison of the preregistration and the652

final publication. Authors should retrospectively summarize and justify any changes made to the653

preregistered plan, e.g. in the discussion of the final manuscript 1. During the analysis process, authors654

can additionally maintain a running changelog to explain changes in detail as they arise. Each entry in655

the changelog should explain the reasoning behind the changes and link to the commit id that applied656

the changes. This enables readers and reviewers to inspects individual changes and make an informed657

judgment about their validity and implications.658

Deviations from the preregistration are sometimes maligned, as if encountering unexpected659

challenges invalidates a carefully crafted study [42]. However, we share the common view that660

deviation from a preregistration is not a problem [43]; rather, a faillure to disclose such deviations is661

a problem. In fact, it is expected that most PACs will require some modification after empirical data662

becomes available. Often, deviations provide an opportunity to learn from the unexpected.663

For example, imagine that authors preregistered their intention to include both “working memory”664

and “fluid intelligence” as covariates in an experimental study, examining the effect of task novelty665

on reaction time. When evaluating the planned analyses on the empirical data, these two covariates666

reveal high collinearity, thus compromising statistical inference. The authors decide to use PCA to667

extract common variance related to “intelligence”, and include this component as a covariate instead.668

This change pertains to an auxiliary assumption (that working memory and fluid intelligence are669

distinct constructs), but does not undermine the core theory (that task novelty affects reaction time).670

Now imagine that a different researcher is interested in the structure of intelligence. This change to the671

preregistration directly relates to their theory of intelligence. That researcher might thus interpret the672

same result as an explorative finding, suggesting that these aspects of intelligence are unidimensional.673

A deviation from preregistration thus requires a judgement about what changes affect the test of the674

theory to what extend [44]. Only transparent reporting enables such judgment.675

Another common misunderstanding is that preregistration, including PAC, precludes exploratory676

analyses. We differentiate between two kinds of exploration, neither of which is limited by PAC.677

The first, more traditional kind of exploration involves ad hoc statistical decisions and post hoc678

explanations of the results. Such traditional exploratory findings should be explicitly declared in the679

manuscript to distinguish them from confirmatory findings [5,43]. The second kind of exploration is680

through procedurally well defined exploration with exploratory statistical models that are standard681

in machine learning [45]. These models often involve dozens, if not hundreds of predictors, which682

1 In section [Preregistration as Code — a Tutorial] we conducted an actual PAC and summarize the changes we make to the
preregistered code in the discussion.

Version November 24, 2021 submitted to Psych 20 of 33

makes it difficult to describe them verbally. With PAC, such models can be preregistered clearly and in683

comprehensive detail and researcher can precisely define a priori how much they want to explore. We684

specifically recommend PAC for such exploratory statistical models. The merit of preregistration in685

these cases is to communicate precisely how much exploration was done; a piece of information that is686

crucial to assess e.g., whether the results might be overfit [46, p. 220f.].687

5.3. Planned Analyses as Functions688

Although researchers may use any form to preregister their planned analyses (e.g., scripts), we689

suggest writing three functions for each planned hypothesis: one to conduct the planned analysis,690

one to simulate the expected data, and to report the results. Using functions makes the analysis more691

portable (i.e., it can easily be used for other datasets), and facilitates repeated evaluation, as is the case692

in a simulation study. The functions shown here do not contain executable code, but the interested693

reader can find working functions in the online supplementary materials that power the example694

below.695

It is difficult to write analysis code when it is not clear what the expected data will look like. We696

therefore recommend first simulating a dataset that resembles the expected structure of the empirical697

data that will be used for the final analysis. Dedicated packages to simulate data for specific analyses698

exist .699

The general format of a simulation function might be as follows:700

1 simulate_data <- function(n, effect_size){

2 # 1. warn users that the results are "fake"

3 # 2. draw `n` samples with `effect_size`

4 # 3. format and return in expected data format

5 }

For linear models, simulating data is extremely simple:701

1 simulate_data <- function(n, effect_size){

2 warning("This manuscript contains mock results based on simulated data.")

3 # Draw n samples from a normal distribution for predictor X

4 x <- rnorm(n)

5 # Calculate dependent variable Y..

6 #.. as a function of population effect size and residual error

7 y <- effect_size * x + rnorm(n)

8 # Return a data.frame

9 data.frame(x = x, y = y)

10 }

Next, write a function to conduct the planned analysis. This function should receive the data and702

compute all relevant results from it. The general format of an analysis function might be:703

1 planned_analyis <- function(data){

2 # 1. preprocess e.g. with `rowMeans(data)`

3 # 2. conduct analysis e.g. with `t.test()`

4 # 3. `return(results)`

5 }

In the simplest case, an analysis function might already exist in R. For the linear model above, the704

analysis function might be:705

https://github.com/aaronpeikert/repro-tutorial/blob/main/R/simulation_funs.R

Version November 24, 2021 submitted to Psych 21 of 33

1 planned_analyis <- function(data){

2 lm(y ~ x, data = data)

3 }

As soon as we have written planned_anaylsis() and simulate_data() we can iteratively706

improve both functions, e.g. until planned_analysis() runs without error and recovers the correct707

parameters from simulate_data(). The goal is to ensure that the output of simulate_data() works708

as input to the function planned_analysis().709

When the researchers are satisfied with the function planned_analysis(), they can think about710

the way the would they would like to report the analysis results via tables, plots, and text. The711

implementation of this reporting should be in the function report_analysis().712

1 report_analysis <- function(results){

2 # 1. create markdown tables from results

3 # 2. conditionally interpret results e.g. if(p < .025)"Result is significant."

4 # (optional) visualize results

5 # 3. return results section formatted in markdown

6 }

This function should again accept the output of planned_analysis() as input. The output of713

this function should be formatted in Markdown. The idea is to automatically generate the full results714

section from the analysis. This way, the preregistration not only specifies the computation but also715

how the its results are reported. Various packages automatically generate well-formatted Markdown716

outputs of statistical reports or even entire tables of estimates or figures directly from R goal to717

help with this objective. Packages like pander [47], stargazer [48], apaTables [49] and papaja [28]718

help you to create dynamically generated professional looking results. The package report [50] is719

particularly noteworthy because it not only generates tables but also a straightforward interpretation720

of the effects as actual prose (e.g., it verbally quantifies the size of an effect).721

Ideally, these three functions can be composed to create a “fake” results section, e.g. when722

composed to report_analysis(planned_analysis(simulate_data())) or simulate_data() %>%723

planned_analysis() %>% report_analysis() outputs a results section.724

5.3.1. Turning a Dynamic Document into a Preregistration725

After researchers are satisfied with their draft preregistration, they should archive a time-stamped726

and uneditable version of the project that serves as the preregistration. zenodo.org [51] is a publicly727

funded service provider that archives digital artefacts for research and provides digital object identifiers728

(DOI) for these archives. While the service is independent of GitHub—in terms of storage facilities and729

financing—you can link GitHub and zenodo.org. Please note that you can only link public GitHub730

repositories to zenodo.org. You may log into zenodo.org through your GitHub account. To log in with731

your GitHub account:732

Navigate to https://zenodo.org/login/� Log in with GitHub733

To link zenodo.org and GitHub734

Log into zenodo.org� Account� GitHub2
735

Or:736

2 https://zenodo.org/account/settings/github/

https://github.com/Rapporter/pander
https://cran.r-project.org/web/packages/stargazer/vignettes/stargazer.pdf
https://dstanley4.github.io/apaTables/articles/apaTables.html
http://frederikaust.com/papaja_man/
https://github.com/easystats/report
https://zenodo.org/login/
https://zenodo.org/account/settings/github/

Version November 24, 2021 submitted to Psych 22 of 33

Navigate to https://zenodo.org/account/settings/github/737

After you have linked a GitHub repository, you trigger the archival by creating a GitHub release.738

To create GitHub release, navigate to GitHub:739

1 usethis::browse_github()

Then click on Releases� Draft a new release. Here you can add all relevant binary files but at740

least a rendered version of the manuscript and the Docker image.741

To summarize, researchers need to write three functions, planned_analysis(), simulate_data(),742

and report_analysis() and embed these into a manuscript that serves as a preregistration in an743

uneditable online repository. After they gathered the actual data, they can replace the simulated data,744

render the dynamic manuscript (therefore run planned_analysis() on the actual data), and write the745

discussion.746

5.4. Alternatives to simulated data747

Simulating data may prove challenging to applied researchers. In the spirit of team science748

and collaboration, one feasible solution is to involve a statistical co-author. However, several easy749

alternatives exist. The downside of these alternatives is that they all rely indirectly on the use of real750

data. This introduces a risk that the planned analyses may be cross-contaminated by any exploratory751

findings. It is crucial to disclose any exposure to the data in preparation of the preregistration (PAC752

or otherwise). This exposure to the data may decrease trust in the objectivity of the preregistration.753

Moreover, researchers should take rigorous measures to prevent exposure to exploratory findings that754

may unintentionally influence their decision making.755

The simplest method is to collect empirical data first, but set it aside and proceed with a copy756

of the data that is blinded by randomly shuffling the order of rows for each variable (independently757

of each other). Shuffling removes any associations between variables, while retaining information758

about the level of measurement and marginal distribution of each variable. If the hypotheses pertain to759

associations between variables, this treatment should thus be sufficient to prevent cross-contamination.760

The researcher can still access the information about means or proportions (e.g., the number of761

participants belonging to group “A” are in the dataset), but remain uninformed about relations762

between variables (e.g., members of group “A” have a greater mean in variable “Z”). Preregistration763

after data collection is common for secondary data analysis of data obtained by other research groups764

[52] but not so much within the same research project. We argue that it is still an eligible preregistration.765

Guidelines for clinical trials already recommend analysis of blinded data to test the feasibility of a766

preregistration [53].767

Another alternative to simulated data is to conduct a pilot study [54] and use the pilot data to768

develop the preregistration. A pilot study has obvious advantages for study planning, since it lets the769

researcher evaluate the feasibility of many assumptions. However, we must warn our readers, that770

while piloting is more traditional than our approach of blinding the data before preregistration, the771

data from the pilot study must not enter the analysis data set.772

5.5. When Is PAC Applicable?773

PAC is applicable to every study that can be preregistered and ultimately uses computer code774

for the statistical analysis. Two types of preregistrations are particularly amenable to PAC. First,775

pregistrations of clinical trials (called statistical analysis plans, International Council for Harmonisation776

of Technical Requirements for Registration of Pharmaceuticals for Human Use [53]) typically describe777

analyses in exhaustive detail and typically contain a detailed description of how results will be778

presented, including shells of tables and graphics [55]. PAC may significantly reduce the required779

workload while maintaining (and exceeding) the required standards for preregistering a clinical trial.780

https://zenodo.org/account/settings/github/

Version November 24, 2021 submitted to Psych 23 of 33

Second, preregistering exploratory statistical models (i.e., those with large numbers of competing781

models or those inspired by machine learning) is hardly feasible with standard preregistrations782

since they are too complex to describe and depend strongly on their software implementation. PAC,783

however, captures the precise algorithmic model, including its software implementation and is ideal784

for preregistering these models [45].785

5.6. Preregistration as Code: Tutorial786

We have argued that PAC has several advantages over classic preregistration and have outlined787

its implementation. To illustrate how PAC works in practice and help researchers to implement PAC788

themselves, we provide a worked example. We will use an exemplary research question that was789

based on openly available data:790

“Is there a mean difference in the personality trait ‘Machiavellism’ between self-identified791

females and males?”792

Again, we propose a preregistration format that closely resembles a classic journal article but793

uses simulated data and dynamic document generation to create a document that starts out as a794

preregistration and eventually becomes the final report. The complete preregistration source is available795

in the online supplementary material. In this section, we show code excerpts of this preregistration796

(formatted in monospace) and explain the rationale behind them.797

As usual, the authors state why they are interested in their research question in the “Introduction”798

section and provide the necessary background information and literature to understand the context799

and purpose of the research question. This example is drastically shortened for illustration purposes:800

1 # Theoretical Background

2

3 Machiavellianism describes a personality dimension characterized by a

4 cynical disregard of morals in the pursuit of one's own interest, e.g.

5 through manipulation [@christie1970] . There is extensive literature reporting

6 differences in the dark triad (narcissism, machiavellianism, and psychopathy)

7 between self-identified males and females [@muris2017] but only few studies

8 focus solely on machiavellianism. We aim to replicate the finding that males

9 tend to have higher machiavellianism scores [@muris2017] .

After researchers have provided the research question, they typically proceed to explain how they801

want to study it. For simplicity, we will use already published data that we have not yet analyzed:802

1 # Method

2

3 We report how we determined our sample size, all data exclusions (if any), all

4 manipulations, and all measures in the study [cf. @simmons2012] . We use data

5 available from [openpsychometrics.org](https://openpsychometrics.org/_rawdata/)

6 from the online version of the MACH-IV[@christie1970] and included participants

7 that have responded to at least one machiavellianism item and reported their

8 gender as either "male" or "female".

We choose the following statistical procedure because many researchers are familiar with it3:803

3 The t-test and Mann-Whitney-Wilcoxon test are arguably the most often used hypothesis tests (according to [56,57] reports
that 26% of all studies employed a t-test and 27% employed a rank-based alternative in the New England Journal of Medicine

https://github.com/aaronpeikert/repro-tutorial/blob/main/preregistration.Rmd

Version November 24, 2021 submitted to Psych 24 of 33

1 We conduct a Student's t-test [@studentProbableErrorMean1908] with Welch's

2 correction [@welchGeneralizationStudentProblem1947] of the average of

3 machiavellianism items between the binary-coded gender groups. If the skew of

4 this average is greater than 1.0 we conduct a supposedly more robust Mann--

5 Whitney--Wilcoxon test [@Wilcoxon1945] instead.

The methods section is the translation of the following planned_analysis() function:804

1 planned_analysis <- function(data, use_rank = "skew", skew_cutoff = 1){

2 # average over all variable supplied, except gender

3 machiavellianism <- rowMeans(data["gender" != names(data)], na.rm = TRUE)

4 # discard rows that only contain NAs

5 data <- data[!is.na(machiavellianism),]

6 machiavellianism <- machiavellianism[!is.na(machiavellianism)]

7 # assure gender is factor

8 gender <- as.factor(data$gender)

9 # note skewness and decide t.test vs wilcox based on it

10 skew <- moments::skewness(machiavellianism)

11 # skewness cutoff

12 if(use_rank == "skew")use_rank <- abs(skew) > skew_cutoff

13 if(use_rank){

14 # t.test + rank = wilcox test

15 machiavellianism <- rank(machiavellianism)

16 }

17 test <- t.test(machiavellianism ~ gender)

18 # return a bunch of information

19 list(test = test, skew = skew, use_rank = use_rank, n = length(gender))

20 }

This function illustrates two advantages of PAC. First, a PAC can easily include data-dependent805

decisions by creating different analysis branches under different conditions. Second, it highlights806

how difficult it is to describe a statistical analysis precisely. The same verbal descriptions may807

be implemented differently by different persons depending on their statistical and programming808

knowledge and assumptions. One example would be using the function wilcox.test instead of809

the combinations of the functions rank and t.test. Either of them is a valid implementation of the810

Mann–Whitney–Wilcoxon test, but the first assumes equal variance. In contrast, the second applies811

Welch’s correction by default and hence is robust even with unequal variances across groups [61].812

Mentioning every such minute implementation detail is almost impossible and would result in overly813

verbose preregistrations. Still, these details can make a difference in the interpretation of statistical814

results and, thus, represent undisclosed researchers’ degrees of freedom.815

Together with the function simulate_data() (not shown here), the function planned_analysis()816

can be used to justify the planned sample size. To that end, simulate_data() is repeatedly called with817

increased sample sizes and the proportion of significant results (power) is recorded. The results for818

such a Monte Carlo simulation for this example are visualized in Figure 5.1. The code for this power819

analysis can be found in the online supplementary material. The next snippet shows how we integrated820

in 2005). The analytical strategy presented here is, in fact, suboptimal in several respects (the assumption of measurement
invariance is untested [58], the effect size is underestimated in the presence of measurement error [59], the effect size is
overestimated for highly skewed distributions [60]). The interested reader can use the provided code for the simulation
to verify that the t-test provides unbiased effect sizes but the Mann-Whitney-Wilcoxon overestimates effect sizes with
increasing sample size and skewness.

https://github.com/aaronpeikert/repro-tutorial/blob/main/R/simulation.R
https://github.com/aaronpeikert/repro-tutorial/blob/main/R/simulation.R

Version November 24, 2021 submitted to Psych 25 of 33

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Sample size

P
ow

er
(P

ro
po

rt
io

n
of

 s
ig

ni
fic

an
t r

es
ul

ts
)

0.0

0.1

0.2

0.3

0.4

0.5
Cohen's d

Figure 5.1: Results of simulation for the power analysis. The cross indicates the sample size that
archives 80% assuming a Cohen’s d of 0.2.

the results dynamically into the preregistration (the origin of the R-variables minn, choosen_power,821

and choosen_d is not shown).822

1 A simulation we conducted indicated that with a sample size of `r minn` for

2 an alpha of .05 (two-sided) we achieve at least `r choosen_power*100`% power

3 assuming a standardized effect size of d=`r choosen_d`.

Monte Carlo simulations are, of course, not only applicable for this analysis method and also823

allow researchers to investigate further relevant properties of their analysis method beyond power824

[62–64].825

We implemented a mechanism that only uses simulated data when the actual data are not yet826

available (in this example, if the file data/data.csv does not exist) for the results section. This827

mechanism also warns readers if these results are based on simulated data. The warning is colored red828

to avoid any confusion between mock and actual results. As soon as the actual data are available, the829

simulated data are no longer used, and the results represent the actual empirical results of the study.830

1 # Results

2

3 ```{r, echo=FALSE, results='asis', warning=FALSE, message=FALSE}

4 real_data <- here::here("data", "data.csv")

5 simulated <- !fs::file_exists(real_data)

6 if(simulated){

7 cat("\\textcolor{red}{The results are based on simulated data and must not be

8 interpreted. They only serve to illustrate the result of the preregistered

Version November 24, 2021 submitted to Psych 26 of 33

9 code.}")

10 set.seed(1234)

11 mach <- simulate_data(900, 8, 0.3, 10)

12 } else {

13 mach <- readr::read_delim(real_data, delim = "\t", na = c("", "NA", "NULL"))

14 # only keep MACH items + gender

15 mach <- dplyr::select(mach, dplyr::matches("�Q\\d+A$"), gender)

16 # code gender according to codebook (3 would be other)

17 mach <-

18 dplyr::mutate(mach, gender = factor(

19 gender,

20 levels = 1:2,

21 labels = c("male", "female")

22))

23 # some items are reversed, see https://core.ac.uk/download/pdf/38810542.pdf

24 reversed_nr <- c(1, 15, 2, 12, 4, 11, 14, 19)

25 reversed <- stringr::str_c("Q", reversed_nr, "A")

26 mach <- dplyr::mutate(mach, dplyr::across(one_of(reversed), ~ 6 - .x))

27 }

28 ```

Following the recommendations outlined in this paper, we did not access the data when we831

initially wrote this code. We therefore did not know the exact format the data would have. This means832

that we did need to change our preregistration after accessing the data to include i.e. the recoding of833

gender (lines 17-22) and the items (lines 23-26).4 This is our summary of what we changed:834

1 # Discussion

2

3 This document only serves to illustrate Preregistration as Code. We, therefore,

4 do not discuss the results. After we have acquired the data, we realized that

5 we had to change the code for reading the data, including recoding gender,

6 missing values and reversed items (see commit [6556a93] (https://github.com/

7 aaronpeikert/repro-tutorial/commit/6556a9395fcdd600b5b0c5358f92a2c6635ae360)

8 and commit [9f7ab21] (https://github.com/aaronpeikert/repro-tutorial/commit/

9 9f7ab212dfaf84a0398752a4b80cf14c71000d00)). We do not believe that these changes

10 influence the results substantively.

Readers can inspect and judge the changes for themselves on GitHub.835

The last thing we need to preregister is the reporting of our results with the combination of the836

functions planned_analysis() and report_analysis().837

1 ```{r, echo=FALSE, results='asis'}

2 report_analysis(planned_analysis(mach))

3 ```

This is an example of how the results could be reported (based on simulated data):838

4 We invite the reader to evaluate the changes we made to the preregistered code. Either on GitHub� “Files changed” or
directly in Git with git diff v0.0.1.1-prereg preregistration.Rmd.

https://github.com/aaronpeikert/repro-tutorial/compare/v0.0.1.1-prereg..main#diff-e21a8fa2e44b297dfefef329a6ef56d283488d467c4b4ffe2a014111e52a170b
https://github.com/aaronpeikert/repro-tutorial/compare/v0.0.1.1-prereg...main

Version November 24, 2021 submitted to Psych 27 of 33

1 report_analysis(planned_analysis(simulate_data(900, 8, 0.3, 10)))

The Welch Two Sample t-test testing the difference of machiavellianism by gender839

(mean in group male = 0.96, mean in group female = 0.79) suggests that the840

effect is - negative, statistically significant, and small (difference = -0.17,841

95% CI [0.12, 0.22], t(887.46) = 6.38, p < .001; Cohen's d = 0.43, 95% CI [0.30,842

0.56])843

This example of a preregistration covers a single study with a single hypothesis. To organize844

studies with multiple hypotheses, we suggest multiple planned_analysis() and report_analysis()845

functions (possibly numbered in accordance with the hypotheses, e.g. 1.2, 2.3 etc.). Preregistrations846

that cover multiple distinct data sources may employ multiple simulate_data() functions. These are847

merely suggestions, and researchers are encouraged to find their own way of how to best organize848

their analysis code.849

The example rendered as a PDF file with real data is available in the online supplementary850

material. The changes we made since preregistering it can be inspected on this GitHub page.851

6. Discussion852

Increased automation is increasingly recognized as a means to improve the research process [65],853

and therefore this workflow fits nicely together with other innovations that employ automation, like854

machine-readable hypothesis tests [66] or automated data documentation [67]. Automated research855

projects promise a wide range of applications, among them PAC [potentially to be submitted as a856

registered report 68,69], direct replication [70], fully automated living metanalysis [71], executable857

research articles [72], and other innovations such as the live analysis of born open data [73,74].858

Central to these innovations is a property we call “reusability,” fully promoted by the present859

workflow. Reusable code can run on different inputs from a similar context and produce valid outputs.860

This property is based on reproducibility but requires the researcher to more carefully write the861

software [75] such that it is built-for-reuse [76]. The reproducible workflow we present here is heavily862

automated and hence promotes reusability. Furthermore, adhering to principles of reusability typically863

removes errors in the code and thus increases the likelihood that the statistical analysis is correct.864

Therefore reproducibility facilitates traditional good scientific practices and provides the foundation865

for promising innovations.866

6.1. Summary867

This paper demonstrated how the R package repro supports researchers in creating reproducible868

research projects, including reproducible manuscripts. These are important building blocks869

for transparent and cumulative science because they enable others to reproduce statistical and870

computational results and reports later in time and on different computers. The workflow we871

present here rests on four software solutions, (1) version control, (2) dynamic document generation, (3)872

dependency tracking and (4) software management to guarantee reproducibility. We first demonstrated873

how to create a reproducible research project. Then, we illustrated how such a project could be874

reproduced—either by the original author and/or collaborators or by a third party.875

We finally presented an example of how the rigorous and automated reproducibility workflow876

introduced by repro may enable other innovations, such as Preregistration as Code (PAC). In PAC the877

entire reproducible manuscript, including planned analyses and results based on simulated data, is878

preregistered. This way, every use of a researchers’ degree of freedom is disclosed. Once real data is879

gathered, the reproducible manuscript is (re-)created with the real data. PAC only becomes possible880

because reproducibility is ensured and leverages version control and dynamic document generation as881

key features of the workflow.882

https://github.com/aaronpeikert/repro-tutorial/files/7309455/preregistration.pdf
https://github.com/aaronpeikert/repro-tutorial/releases/tag/v0.0.3.1-results
https://github.com/aaronpeikert/repro-tutorial/releases/tag/v0.0.3.1-results
https://github.com/aaronpeikert/repro-tutorial/releases/tag/v0.0.3.1-results
https://github.com/aaronpeikert/repro-tutorial/compare/v0.0.1.1-prereg..main#diff-e21a8fa2e44b297dfefef329a6ef56d283488d467c4b4ffe2a014111e52a170b

Version November 24, 2021 submitted to Psych 28 of 33

6.2. Limitations883

We realize that the workflow outlined in this paper, and its application in PAC, remains884

challenging despite our efforts to simplify the procedure by means of the repro package. This885

paper should be considered as a starting point for those seeking to improve the reproducibility of their886

research. Two kinds of limitations can be distinguished. The first kind are limitations by design which887

are unlikely to change. Our workflow inherits these from the software it relies on and the fundamental888

design principles these share with the workflow and repro. The second kind are limitations in889

repro and its dependencies that may be overcome by our future efforts and those of the open-source890

development community.891

With regard to limitations by design, the workflow outlined in this paper is fundamentally892

incompatible with steps that cannot be automated. This principle may be at odds with some ingrained893

habits of researchers to mix and match manual and automated steps in data analysis. To allow for894

automation, many researchers will have to search for alternative software.895

The automation-friendly software we present here has several technical but critical limitations. For896

example, Git can track any filetype, but tracked changes are only meaningful for text files (with897

endings like, .txt, .csv, .R, .py, or .Rmd), not for binary files (with endings like .docx, .exe, or .zip).898

Furthermore, tables and graphics dynamically generated from code are difficult to edit by hand. Make899

can automate any programmable software, but not software that is exclusively controlled through900

a point-and-click user interface. Finally, Docker can ship software that runs on Linux and can be901

automatically installed, which precludes much commercial or closed-source software.902

This move away from software that has served researchers well for decades is understandably903

difficult and presents us with a conundrum. On the one hand, we firmly believe that automated904

reproducibility makes research more productive and collaboration easier. But, on the other hand, we905

expect researchers to invest considerable time in learning new tools and to persuade their collaborators906

to do the same. Three arguments reconcile this apparent paradox. First, this change will not happen907

all at once. Automated reproducibility is an ideal that we believe has many advantages, but it is908

not an all-or-nothing decision. Researchers can pick up one skill at a time and then help their fellow909

collaborators to do the same. Second, the upfront investment is required once (and efforts such as910

repro are underway to reduce it) and will pay dividends over many research projects. Third, the move911

towards open software for research offers several benefits beyond enabling automated reproducibility912

[77–80].913

With regard to surmountable limitations, we acknowledge that the repro package is still in914

development. One limitation is that repro relies on several software dependencies, which represents a915

threat to long-term reproducibility in itself. For example, to benefit from automatic and convenient916

reproduction, researchers must use Git, Make, and Docker. However, Git and Make are themselves917

included in the Docker image created by repro. Researchers can therefore employ the Docker image918

manually to download the Git repository and execute Make for full reproduction. In other words,919

the only hard requirement for reproduction and therefore its Achilles’ heel, is Docker. The Docker920

approach has two vulnerabilities. First, and more importantly, the Docker image for the project and921

the Git repository have to remain available. The Dockerfile (the plain text description to build a922

Docker image), as opposed to the image, is insufficient because it relies on too many service providers923

(e.g., Microsoft R Application Network, Ubuntu Package Archive). To overcome this limitation,924

we recommend archiving the Git repository and the Docker image with zenodo.org, a non-profit925

long-term storage for scientific data. The necessary steps for archival on zenodo.org are described at926

the end of Section [Preregistration as Code — a Tutorial].927

The second vulnerability is that even if the existence of the Docker image and Git repository is928

guaranteed, future researchers still require software to run the image. To that end, they can either929

rely on Docker itself or Docker-compatible alternatives (e.g., CoreOS rkt, Mesos Containerizer,930

Singularity). The only way to remove the reliance on such external software is to turn the Docker931

image into a full operating system that subsequently can be installed and run on almost any modern932

Version November 24, 2021 submitted to Psych 29 of 33

computer. This process is technically possible and would guarantee reproducibility for decades without933

any software dependency, assuming hardware that conforms to the x86 instruction set architecture934

continues to be available. However, this process requires much technical knowledge and is currently935

not facilitated by repro. With regard to this vulnerability, it is worthwhile to note that the R Markdown,936

Makefile, and Dockerfile do provide information that allows researchers to trace the computational937

steps and recreate the computational environment manually. The Makefile, for example, is written938

in a way that researchers can manually trace the dependencies and execute commands in the right939

order, in case they are unable to run Make for some reason. Thus hypothetically, even if Docker were to940

become unavailable one day, the Dockerfile still serves as unambiguous documentation of how the941

original system was set up and may help future users to create a software environment that closely942

resembles the original.943

6.3. Outlook944

Open science practices are a continually evolving field where technical innovations foster changes945

in research practice. Open data are much more widespread today thanks to online storage facilities;946

preregistration is possible because there are preregistration platforms and so forth. Similarly, we hope947

that fully automatic reproduction, e.g., with repro as a technical innovation, will promote increased948

scientific rigor, efficiency, and productivity.949

In practice, this ideal of a fully automatic reproduction of research projects can conflict with the950

wide range of demands for more user-friendly and powerful software. Some may find that Make is951

too complicated or that Docker requires too much storage space. Yet others may find that they require952

other programming languages or want to scale their computation across hundreds of computers, e.g.,953

via high-performance computing clusters or cloud computing.954

repro was designed modularly to meet many such demands. At the moment, repro only955

supports the combination of R Markdown, Git, Make, and Docker. However, there are alternatives956

for each of these elements that may fit better into an individual research project. R Markdown could957

be complemented or replaced by a dynamic Microsoft Word document with the help of officer958

[81] or officedown [82] to accommodate a wider range of journal submission standards. Instead959

of using formal version control with Git, repro could automatically save snapshots for increasing960

user-friendliness. Make could be replaced by the more R-centered alternative targets for more961

convenience. Docker could be combined with renv [22] to control the package versions precisely (our962

approach fixes the date, renv the exact package version). Alternatively, Docker could be replaced by963

the more lightweight renv if no dependencies outside of R are considered crucial. Docker does not964

satisfy the requirements of many HPC environments, but Singularity was designed to avoid this965

limitation while still being compatible with Docker images.966

repro’s modular structure allows such alternative workflows, though they have not yet been967

implemented. Depending on the demand by users, we will implement some of them in repro and968

hope for broad adoption of computational reproducibility in the near future.969

Acknowledgments: We would like to thank Maximilian Stefan Ernst for his contributions to the code for the970

simulation study. We are grateful to Julia Delius for her helpful assistance in language and style editing. The R971

package repro was developed as part of the first author’s master thesis at the Humboldt-Universität zu Berlin.972

Author Contributions: Aaron Peikert took the lead in writing and provided the initial draft of the manuscript.973

Andreas Brandmaier and Caspar J. Van Lissa contributed further ideas, critical feedback, and revisions of the974

original manuscript.975

Conflicts of Interest: The authors declare no conflict of interest. We have received no financial support for the976

research, authorship, and/or publication of this article.977

Abbreviations978

The following abbreviations are used in this manuscript:979

980

https://aaronpeikert.github.io/repro-thesis/

Version November 24, 2021 submitted to Psych 30 of 33

PAC Preregistration as Code
Gb Gigabyte
Kb Kilobyte
CRAN Comprehensive R Archive Network
WORCS Workflow for Open Reproducible Code in Science

981

References982

1. Peikert, A.; Brandmaier, A.M. A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and983

Docker. Quantitative and Computational Methods in Behavioral Sciences 2021, 1, e3763. doi:10.5964/qcmb.3763.984

2. Popper, K.R. The Logic of Scientific Discovery; Routledge: London, 2002.985

3. Obels, P.; Lakens, D.; Coles, N.A.; Gottfried, J.; Green, S.A. Analysis of Open Data and Computational986

Reproducibility in Registered Reports in Psychology. Advances in Methods and Practices in Psychological987

Science 2020, 3, 229–237.988

4. van Lissa, C.J.; Brandmaier, A.M.; Brinkman, L.; Lamprecht, A.L.; Peikert, A.; Struiksma, M.E.; Vreede,989

B.M. WORCS: A Workflow for Open Reproducible Code in Science. Data Science 2021, 4, 29–49.990

doi:10.3233/DS-210031.991

5. Nosek, B.A.; Ebersole, C.R.; DeHaven, A.C.; Mellor, D.T. The Preregistration Revolution. Proceedings of the992

National Academy of Sciences 2018, 115, 2600–2606. doi:10.1073/pnas.1708274114.993

6. Hardwicke, T.E.; Mathur, M.B.; MacDonald, K.; Nilsonne, G.; Banks, G.C.; Kidwell, M.C.;994

Hofelich Mohr, A.; Clayton, E.; Yoon, E.J.; Henry Tessler, M.; Lenne, R.L.; Altman, S.; Long, B.;995

Frank, M.C. Data Availability, Reusability, and Analytic Reproducibility: Evaluating the Impact of996

a Mandatory Open Data Policy at the Journal Cognition. Royal Society Open Science 2018, 5, 180448,997

[https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180448]. doi:10.1098/rsos.180448.998

7. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical999

Computing, Vienna, Austria, 2021.1000

8. Vuorre, M.; Curley, J.P. Curating Research Assets: A Tutorial on the Git Version Control System. Advances1001

in Methods and Practices in Psychological Science 2018, 1, 219–236. doi:10.1177/2515245918754826.1002

9. Bryan, J. Excuse Me, Do You Have a Moment to Talk About Version Control? The American Statistician1003

2018, 72, 20–27. doi:10.1080/00031305.2017.1399928.1004

10. Nuijten, M.B.; Hartgerink, C.H.J.; van Assen, M.A.L.M.; Epskamp, S.; Wicherts, J.M. The Prevalence of1005

Statistical Reporting Errors in Psychology (1985–2013). Behavior Research Methods 2016, 48, 1205–1226.1006

doi:10.3758/s13428-015-0664-2.1007

11. Knuth, D.E.; Levy, S. The CWEB System of Structured Documentation; Addison-Wesley Longman, 1994.1008

12. Claerbout, J.F.; Karrenbach, M. Electronic Documents Give Reproducible Research a New Meaning. In1009

SEG Technical Program Expanded Abstracts 1992; SEG Technical Program Expanded Abstracts, Society of1010

Exploration Geophysicists, 1992; pp. 601–604. doi:10.1190/1.1822162.1011

13. Lamport, L. LATEX: A Document Preparation System: User’s Guide and Reference Manual, 2nd ed.;1012

Addison-Wesley: Reading, MA, 1994.1013

14. Allaire, J.; Xie, Y.; R Foundation.; Wickham, H.; Journal of Statistical Software.; Vaidyanathan, R.;1014

Association for Computing Machinery.; Boettiger, C.; Elsevier.; Broman, K.; Mueller, K.; Quast, B.; Pruim,1015

R.; Marwick, B.; Wickham, C.; Keyes, O.; Yu, M.; Emaasit, D.; Onkelinx, T.; Gasparini, A.; Desautels, M.A.;1016

Leutnant, D.; MDPI.; Taylor and Francis.; Öğreden, O.; Hance, D.; Nüst, D.; Uvesten, P.; Campitelli, E.;1017

Muschelli, J.; Hayes, A.; Kamvar, Z.N.; Ross, N.; Cannoodt, R.; Luguern, D.; Kaplan, D.M.; Kreutzer, S.;1018

Wang, S.; Hesselberth, J.; Dervieux, C. rticles: Article Formats for R Markdown, 2021. R package version 0.19.1019

15. El Hattab, H.; Allaire, J. Revealjs: R Markdown Format for ’reveal.Js’ Presentations, 2017.1020

16. O’Hara-Wild, M.; Hyndman, R. Vitae: Curriculum Vitae for r Markdown, 2021.1021

17. Xie, Y.; Dervieux, C.; Riederer, E. R Markdown Cookbook, first ed.; The R Series, Taylor and Francis, CRC1022

Press: Boca Raton, 2020.1023

18. Silver, A. Software Simplified. Nature 2017, 546, 173–174.1024

19. Boettiger, C.; Eddelbuettel, D. An Introduction to Rocker: Docker Containers for R. The R Journal 2017,1025

9, 527. doi:10.32614/RJ-2017-065.1026

https://doi.org/10.5964/qcmb.3763
https://doi.org/10.3233/DS-210031
https://doi.org/10.1073/pnas.1708274114
http://xxx.lanl.gov/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180448
https://doi.org/10.1098/rsos.180448
https://doi.org/10.1177/2515245918754826
https://doi.org/10.1080/00031305.2017.1399928
https://doi.org/10.3758/s13428-015-0664-2
https://doi.org/10.1190/1.1822162
https://doi.org/10.32614/RJ-2017-065

Version November 24, 2021 submitted to Psych 31 of 33

20. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.;1027

Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.L.; Miller, E.; Bache, S.M.; Müller, K.; Ooms, J.; Robinson, D.;1028

Seidel, D.P.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the tidyverse.1029

Journal of Open Source Software 2019, 4, 1686. doi:10.21105/joss.01686.1030

21. Wiebels, K.; Moreau, D. Leveraging Containers for Reproducible Psychological Research. Advances in1031

Methods and Practices in Psychological Science 2021, 4, 25152459211017853. doi:10.1177/25152459211017853.1032

22. Ushey, K. renv: Project Environments, 2021. R package version 0.13.2.1033

23. Wickham, H.; Bryan, J. Usethis: Automate Package and Project Setup, 2021.1034

24. Parasuraman, R.; Mouloua, M. Automation and Human Performance: Theory and Applications, first ed.; CRC1035

Press: Boca Raton, FL, 2019.1036

25. RStudio Team. RStudio: Integrated Development Environment for r. RStudio, PBC, Boston, MA, 2021.1037

26. Peikert, A.; Brandmaier, A.M.; van Lissa, C.J. repro: Automated Setup of Reproducible Workflows and their1038

Dependencies, 2021. R package version 0.1.0.1039

27. Xie, Y.; Allaire, J.J.; Grolemund, G. R Markdown: The Definitive Guide; CRC Press: Boca Raton, FL, 2019.1040

28. Aust, F.; Barth, M. papaja: Create APA Manuscripts with R Markdown, 2020.1041

29. Association, A.P., Ed. Publication Manual of the American Psychological Association, 7th ed.; American1042

Psychological Association: Washington, DC, 2019.1043

30. DeCoster, J.; Sparks, E.A.; Sparks, J.C.; Sparks, G.G.; Sparks, C.W. Opportunistic Biases: Their Origins,1044

Effects, and an Integrated Solution. American Psychologist 2015, 70, 499–514. doi:10.1037/a0039191.1045

31. Silberzahn, R.; Uhlmann, E.L.; Martin, D.P.; Anselmi, P.; Aust, F.; Awtrey, E.; Bahnik, S.; Bai, F.; Bannard,1046

C.; Bonnier, E.; Carlsson, R.; Cheung, F.; Christensen, G.; Clay, R.; Craig, M.A.; Dalla Rosa, A.; Dam, L.;1047

Evans, M.H.; Flores Cervantes, I.; Fong, N.; Gamez-Djokic, M.; Glenz, A.; Gordon-McKeon, S.; Heaton,1048

T.J.; Hederos, K.; Heene, M.; Hofelich Mohr, A.J.; Högden, F.; Hui, K.; Johannesson, M.; Kalodimos, J.;1049

Kaszubowski, E.; Kennedy, D.M.; Lei, R.; Lindsay, T.A.; Liverani, S.; Madan, C.R.; Molden, D.; Molleman,1050

E.; Morey, R.D.; Mulder, L.B.; Nijstad, B.R.; Pope, N.G.; Pope, B.; Prenoveau, J.M.; Rink, F.; Robusto,1051

E.; Roderique, H.; Sandberg, A.; Schlüter, E.; Schönbrodt, F.D.; Sherman, M.F.; Sommer, S.A.; Sotak, K.;1052

Spain, S.; Spörlein, C.; Stafford, T.; Stefanutti, L.; Tauber, S.; Ullrich, J.; Vianello, M.; Wagenmakers, E.J.;1053

Witkowiak, M.; Yoon, S.; Nosek, B.A. Many Analysts, One Data Set: Making Transparent How Variations1054

in Analytic Choices Affect Results. Advances in Methods and Practices in Psychological Science 2018, 1, 337–356.1055

doi:10.1177/2515245917747646.1056

32. Bowman, S.; DeHaven, A.; Errington, T.; Hardwicke, T.E.; Mellor, D.T.; Nosek, B.A.; Soderberg, C.K. OSF1057

Prereg Template 2020. doi:10.31222/osf.io/epgjd.1058

33. Bakker, M.; Veldkamp, C.L.S.; van Assen, M.A.L.M.; Crompvoets, E.A.V.; Ong, H.H.; Nosek, B.A.;1059

Soderberg, C.K.; Mellor, D.; Wicherts, J.M. Ensuring the Quality and Specificity of Preregistrations.1060

PLOS Biology 2020, 18, e3000937. doi:10.1371/journal.pbio.3000937.1061

34. Bakker, M.; Veldkamp, C.L.S.; van den Akker, O.R.; van Assen, M.A.L.M.; Crompvoets, E.; Ong,1062

H.H.; Wicherts, J.M. Recommendations in Pre-Registrations and Internal Review Board Proposals1063

Promote Formal Power Analyses but Do Not Increase Sample Size. PLOS ONE 2020, 15, e0236079.1064

doi:10.1371/journal.pone.0236079.1065

35. Steegen, S.; Dewitte, L.; Tuerlinckx, F.; Vanpaemel, W. Measuring the Crowd within Again: A1066

Pre-Registered Replication Study. Frontiers in Psychology 2014, 5. doi:10.3389/fpsyg.2014.00786.1067

36. Morris, T.P.; White, I.R.; Crowther, M.J. Using Simulation Studies to Evaluate Statistical Methods. Statistics1068

in Medicine 2019, 38, 2074–2102. doi:10.1002/sim.8086.1069

37. Paxton, P.; Curran, P.J.; Bollen, K.A.; Kirby, J.; Chen, F. Monte Carlo Experiments: Design1070

and Implementation. Structural Equation Modeling: A Multidisciplinary Journal 2001, 8, 287–312.1071

doi:10.1207/S15328007SEM0802_7.1072

38. Skrondal, A. Design and Analysis of Monte Carlo Experiments: Attacking the Conventional Wisdom.1073

Multivariate Behavioral Research 2000, 35, 137–167. doi:10.1207/S15327906MBR3502_1.1074

39. Goldfeld, K.; Wujciak-Jens, J. Simstudy: Illuminating Research Methods through Data Generation. Journal1075

of Open Source Software 2020, 5, 2763. doi:10.21105/joss.02763.1076

40. Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern1077

University, Evanston, Ill, 2021.1078

https://doi.org/10.21105/joss.01686
https://doi.org/10.1177/25152459211017853
https://doi.org/10.1037/a0039191
https://doi.org/10.1177/2515245917747646
https://doi.org/10.31222/osf.io/epgjd
https://doi.org/10.1371/journal.pbio.3000937
https://doi.org/10.1371/journal.pone.0236079
https://doi.org/10.3389/fpsyg.2014.00786
https://doi.org/10.1002/sim.8086
https://doi.org/10.1207/S15328007SEM0802_7
https://doi.org/10.1207/S15327906MBR3502_1
https://doi.org/10.21105/joss.02763

Version November 24, 2021 submitted to Psych 32 of 33

41. Wicherts, J.M.; Veldkamp, C.L.S.; Augusteijn, H.E.M.; Bakker, M.; van Aert, R.C.M.; van Assen, M.A.L.M.1079

Degrees of Freedom in Planning, Running, Analyzing, and Reporting Psychological Studies: A Checklist1080

to Avoid p-Hacking. Frontiers in Psychology 2016, 7, 1832. doi:10.3389/fpsyg.2016.01832.1081

42. Szollosi, A.; Kellen, D.; Navarro, D.J.; Shiffrin, R.; van Rooij, I.; Van Zandt, T.; Donkin, C. Is Preregistration1082

Worthwhile? Trends in Cognitive Sciences 2020, 24, 94–95. doi:10.1016/j.tics.2019.11.009.1083

43. Nosek, B.A.; Beck, E.D.; Campbell, L.; Flake, J.K.; Hardwicke, T.E.; Mellor, D.T.; van ’t Veer, A.E.;1084

Vazire, S. Preregistration Is Hard, And Worthwhile. Trends in Cognitive Sciences 2019, 23, 815–818.1085

doi:10.1016/j.tics.2019.07.009.1086

44. Meehl, P.E. Theoretical Risks and Tabular Asterisks: Sir Karl, Sir Ronald, and the Slow Progress of Soft1087

Psychology. Journal of Consulting and Clinical Psychology 1978, 46, 806–834. doi:10.1037/0022-006X.46.4.806.1088

45. Brandmaier, A.M.; Jacobucci, R. Machine-Learning Approaches to Structural Equation Modeling. In1089

Handbook of Structural Equation Modeling, 2nd rev. ed.; Hoyle, R.H., Ed.; Guilford Press, in press.1090

46. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and1091

Prediction, second edition, corrected at 12th printing 2017 ed.; Springer Series in Statistics, Springer: New1092

York, NY, 2017.1093

47. Daróczi, G.; Tsegelskyi, R. Pander: An R ’pandoc’ Writer, 2021.1094

48. Hlavac, M. Stargazer: Well-Formatted Regression and Summary Statistics Tables. Central European Labour1095

Studies Institute (CELSI), Bratislava, Slovakia, 2018.1096

49. Stanley, D. apaTables: Create American Psychological Association (APA) Style Tables, 2021.1097

50. Makowski, D.; Ben-Shachar, M.S.; Patil, I.; Lüdecke, D. Automated Results Reporting as a Practical Tool to1098

Improve Reproducibility and Methodological Best Practices Adoption. CRAN 2021.1099

51. European Organization For Nuclear Research.; OpenAIRE. Zenodo, 2013. doi:10.25495/7GXK-RD71.1100

52. Weston, S.J.; Ritchie, S.J.; Rohrer, J.M.; Przybylski, A.K. Recommendations for Increasing the Transparency1101

of Analysis of Preexisting Data Sets. Advances in Methods and Practices in Psychological Science 2019,1102

2, 214–227. doi:10.1177/2515245919848684.1103

53. International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for1104

Human Use. E 9 Statistical Principles for Clinical Trials, 1998.1105

54. Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.;1106

Goldsmith, C.H. A Tutorial on Pilot Studies: The What, Why and How. BMC Medical Research Methodology1107

2010, 10, 1. doi:10.1186/1471-2288-10-1.1108

55. Yuan, I.; Topjian, A.A.; Kurth, C.D.; Kirschen, M.P.; Ward, C.G.; Zhang, B.; Mensinger, J.L. Guide to the1109

Statistical Analysis Plan. Pediatric Anesthesia 2019, 29, 237–242. doi:10.1111/pan.13576.1110

56. Fagerland, M.W. T-Tests, Non-Parametric Tests, and Large Studies—a Paradox of Statistical Practice? BMC1111

Medical Research Methodology 2012, 12, 78. doi:10.1186/1471-2288-12-78.1112

57. Horton, N.J.; Switzer, S.S. Statistical Methods in the Journal. New England Journal of Medicine 2005,1113

353, 1977–1979. doi:10.1056/NEJM200511033531823.1114

58. Putnick, D.L.; Bornstein, M.H. Measurement Invariance Conventions and Reporting: The State of the1115

Art and Future Directions for Psychological Research. Developmental review 2016, 41, 71–90, [27942093].1116

doi:10.1016/j.dr.2016.06.004.1117

59. Frost, C.; Thompson, S.G. Correcting for Regression Dilution Bias: Comparison of Methods for a Single1118

Predictor Variable. Journal of the Royal Statistical Society. Series A (Statistics in Society) 2000, 163, 173–189.1119

doi:10.1111/1467-985x.00164.1120

60. Stonehouse, J.M.; Forrester, G.J. Robustness of the t and U Tests under Combined Assumption Violations.1121

Journal of Applied Statistics 1998, 25, 63–74. doi:10.1080/02664769823304.1122

61. Zimmerman, D.W.; Zumbo, B.D. Rank Transformations and the Power of the Student t Test and Welch t’1123

Test for Non-Normal Populations with Unequal Variances. Canadian Journal of Experimental Psychology/Revue1124

canadienne de psychologie expérimentale 1993, 47, 523–539. doi:10.1037/h0078850.1125

62. Brandmaier, A.M.; von Oertzen, T.; Ghisletta, P.; Lindenberger, U.; Hertzog, C. Precision, Reliability, and1126

Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis.1127

Frontiers in Psychology 2018, 9, 294. doi:10.3389/fpsyg.2018.00294.1128

63. Harrison, R.L. Introduction to Monte Carlo Simulation. AIP Conference Proceedings 2010, 1204, 17–21.1129

doi:10.1063/1.3295638.1130

https://doi.org/10.3389/fpsyg.2016.01832
https://doi.org/10.1016/j.tics.2019.11.009
https://doi.org/10.1016/j.tics.2019.07.009
https://doi.org/10.1037/0022-006X.46.4.806
https://doi.org/10.25495/7GXK-RD71
https://doi.org/10.1177/2515245919848684
https://doi.org/10.1186/1471-2288-10-1
https://doi.org/10.1111/pan.13576
https://doi.org/10.1186/1471-2288-12-78
https://doi.org/10.1056/NEJM200511033531823
http://xxx.lanl.gov/abs/27942093
https://doi.org/10.1016/j.dr.2016.06.004
https://doi.org/10.1111/1467-985x.00164
https://doi.org/10.1080/02664769823304
https://doi.org/10.1037/h0078850
https://doi.org/10.3389/fpsyg.2018.00294
https://doi.org/10.1063/1.3295638

Version November 24, 2021 submitted to Psych 33 of 33

64. Raychaudhuri, S. Introduction to Monte Carlo Simulation. 2008 Winter Simulation Conference, 2008, pp.1131

91–100. doi:10.1109/WSC.2008.4736059.1132

65. Rouder, J.N.; Haaf, J.M.; Snyder, H.K. Minimizing Mistakes in Psychological Science. Advances in Methods1133

and Practices in Psychological Science 2019, 2, 3–11. doi:10.1177/2515245918801915.1134

66. Lakens, D.; DeBruine, L.M. Improving Transparency, Falsifiability, and Rigor by Making Hypothesis Tests1135

Machine-Readable. Advances in Methods and Practices in Psychological Science 2021, 4, 2515245920970949.1136

doi:10.1177/2515245920970949.1137

67. Arslan, R.C. How to Automatically Document Data With the Codebook Package to Facilitate Data Reuse.1138

Advances in Methods and Practices in Psychological Science 2019, 2, 169–187. doi:10.1177/2515245919838783.1139

68. Nosek, B.A.; Lakens, D. Registered Reports. Social Psychology 2014, 45, 137–141.1140

doi:10.1027/1864-9335/a000192.1141

69. Chambers, C. What’s next for Registered Reports? Nature 2019, 573, 187–189.1142

doi:10.1038/d41586-019-02674-6.1143

70. Simons, D.J. The Value of Direct Replication. Perspectives on Psychological Science 2014, 9, 76–80.1144

doi:10.1177/1745691613514755.1145

71. Elliott, J.H.; Turner, T.; Clavisi, O.; Thomas, J.; Higgins, J.P.T.; Mavergames, C.; Gruen, R.L. Living1146

Systematic Reviews: An Emerging Opportunity to Narrow the Evidence-Practice Gap. PLoS Medicine 2014,1147

11, e1001603. doi:10.1371/journal.pmed.1001603.1148

72. eLife Sciences Publications. eLife Launches Executable Research Articles for Publishing Computationally1149

Reproducible Results 2020.1150

73. Rouder, J.N. The What, Why, and How of Born-Open Data. Behavior Research Methods 2016, 48, 1062–1069.1151

doi:10.3758/s13428-015-0630-z.1152

74. Kekecs, Z.; Aczel, B.; Palfi, B.; Szaszi, B.; Szecsi, P.; Zrubka, M.; Kovacs, M.; Bakos, B.E.; Cousineau, D.;1153

Tressoldi, P.; Grassi, M.; Arnold, D.; Evans, T.R.; Yamada, Y.; Miller, J.K.; Liu, H.; Yonemitsu, F.; Dubrov, D.1154

Raising the Value of Research Studies in Psychological Science by Increasing the Credibility of Research1155

Reports: The Transparent Psi Project - Preprint 2020. doi:10.31234/osf.io/uwk7y.1156

75. Lanergan, R.G.; Grasso, C.A. Software Engineering with Reusable Designs and Code. In Software Reusability:1157

Vol. 2, Applications and Experience; Association for Computing Machinery: New York, 1989; pp. 187–195.1158

76. Al-Badareen, A.B.; Selamat, M.H.; Jabar, M.A.; Din, J.; Turaev, S. Reusable Software Components1159

Framework. Proceedings of the European Conference of Systems, and European Conference of Circuits1160

Technology and Devices, and European Conference of Communications, and European Conference on1161

Computer Science; World Scientific and Engineering Academy and Society (WSEAS): Stevens Point, WI,1162

2010; ECS’10/ECCTD’10/ECCOM’10/ECCS’10, pp. 126–130.1163

77. Schaffner, A.C. The Future of Scientific Journals: Lessons from the Past. Information Technology and Libraries1164

1994, 13, 239–47.1165

78. Fitzgerald, B. The Transformation of Open Source Software. MIS Quarterly 2006, 30, 587–598.1166

doi:10.2307/25148740.1167

79. Chaldecott, J.A. A History of Scientific and Technical Periodicals: The Origins and Development of1168

the Scientific and Technological Press. The British Journal for the History of Science 1965, 2, 360–361.1169

doi:10.1017/S0007087400002557.1170

80. Sonnenburg, S.; Braun, M.L.; Ong, C.S.; Bengio, S.; Bottou, L.; Holmes, G.; LeCun, Y.; Müller, K.R.; Pereira,1171

F.; Rasmussen, C.E.; Rätsch, G.; Schölkopf, B.; Smola, A.; Vincent, P.; Weston, J.; Williamson, R. The Need1172

for Open Source Software in Machine Learning. Journal of Machine Learning Research 2007, 8, 2443–2466.1173

81. Gohel, D. Officer: Manipulation of Microsoft Word and PowerPoint Documents, 2021.1174

82. Gohel, D.; Ross, N. Officedown: Enhanced ’R Markdown’ Format for ’Word’ and ’PowerPoint’, 2021.1175

© 2021 by the authors. Submitted to Psych for possible open access publication under the terms and conditions of1176

the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).1177

https://doi.org/10.1109/WSC.2008.4736059
https://doi.org/10.1177/2515245918801915
https://doi.org/10.1177/2515245920970949
https://doi.org/10.1177/2515245919838783
https://doi.org/10.1027/1864-9335/a000192
https://doi.org/10.1038/d41586-019-02674-6
https://doi.org/10.1177/1745691613514755
https://doi.org/10.1371/journal.pmed.1001603
https://doi.org/10.3758/s13428-015-0630-z
https://doi.org/10.31234/osf.io/uwk7y
https://doi.org/10.2307/25148740
https://doi.org/10.1017/S0007087400002557
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Threats to Reproducibility and Appropriate Remedies
	Creating Reproducible Research Projects
	Creating an RStudio Project
	Implementing Version Control
	Using Dynamic Document Generation
	Manage Software and File Dependencies
	Reproducing a project
	Summary

	Advanced Features
	Preregistration as Code
	Advantages of PAC Over Traditional Preregistration
	Deviating from the Preregistration and Exploration
	Planned Analyses as Functions
	Turning a Dynamic Document into a Preregistration

	Alternatives to simulated data
	When Is PAC Applicable?
	Preregistration as Code: Tutorial

	Discussion
	Summary
	Limitations
	Outlook

	References

