-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExt100MathFre.gf
74 lines (59 loc) · 2.09 KB
/
Ext100MathFre.gf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
--# -path=../wikimath:../extraction:../forthel:../mathterms:../extraction/morphodict
concrete Ext100MathFre of Ext100Math =
WikiMathFre - [
injective_module_Q2716519_der_AP,
collection_Q18029547_CN,
injective_object_Q1625040_der_AP,
differentiable_map_Q77989741_der_CN,
natural_number_Q21199_CN
]
**
open
SyntaxFre,
SymbolicFre,
GrammarFre,
Prelude,
(P=ParadigmsFre)
in {
------------ extensions for the 100 theorems ----------------
lin
PostForStatement qns s = lin S {s = \\o => s.s ! o ++ (mkAdv for_Prep qns).s} ;
LatexIndexedStatement n = lin S {s = \\_ => (indexedSymb n.s).s} ;
ClassNounIndexedNotion pc x = {
cn = mkCN (mkCN pc.cn (<symb (indexedSymb x.s) : NP>)) pc.adv ;
isPlur = False
} ;
PrimClassOfDefNoun pc cn =
mkCN pc.cn (mkAdv part_Prep (mkNP aPl_Det (mkCN cn.cn cn.adv))) ;
ClassOfDefiniteNoun A B = mkCN A (possessAdv B) ;
ClassOfClassNoun A B = {
cn = A ;
adv = possessAdv B
} ;
ClassFromToClassNoun A B C = {
cn = A ;
adv = concatAdv (mkAdv from_Prep B) (mkAdv to_Prep C)
} ;
ClassFromOntoClassNoun A B C = {
cn = A ;
adv = concatAdv (mkAdv from_Prep B) (mkAdv onto_Prep C)
} ;
LatexNamesAssumption names classnoun =
mkPhr
(mkUtt (ImpP3 (namesNP (names ** {s = mathEnvStr names.s}))
(mkVP (mkCN classnoun.cn classnoun.adv)))) ;
AllSymbTerm st = mkNP all_Predet <symb st : NP> ;
IsThePredicate defnoun = mkVP (mkNP the_Det defnoun) ;
equinumerous_AP = mkAP (P.mkA "équinombreux") ;
surjection_CN = mkCN (P.mkN "surjection") ;
powerset_CN = mkCN (P.mkN "ensemble" P.masculine) (P.mkAdv "puissance") ;
oper
indexedSymb : Str -> Symb = \n -> mkSymb (mathEnvStr (macroApp "INDEXEDTERM" n)) ;
onto_Prep : Prep = on_Prep ;
lin
injective_module_Q2716519_der_AP = mkAP (P.mkA "injectif") ;
collection_Q18029547_CN = mkCN (P.mkN "collection") ;
injective_object_Q1625040_der_AP = mkAP (P.mkA "injectif") ;
differentiable_map_Q77989741_der_CN = mkCN (P.mkN "application") ;
natural_number_Q21199_CN = mkCN (P.mkA "naturel") (P.mkN "entier") ;
}