-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeteor.py
183 lines (145 loc) · 5.2 KB
/
meteor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import sys
import pickle
import argparse
import re
import os
import numpy as np
from nltk.translate.meteor_score import meteor_score
from myutils import prep, drop, statusout, batch_gen, seq2sent, index2word
def fil(com):
ret = list()
for w in com:
if not '<' in w:
ret.append(w)
return ret
def corpus_meteor(expected, predicted):
scores = list()
for e, p in zip(expected, predicted):
e = [' '.join(x) for x in e]
p = ' '.join(p)
m = meteor_score(e, p)
scores.append(m)
return scores, np.mean(scores)
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
x = np.asarray(x)
x = x.astype(np.float)
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
def fil(com):
ret = list()
for w in com:
if not '<' in w:
ret.append(w)
return ret
def meteor_so_far_m_only(refs, preds):
scores, m = corpus_meteor(refs, preds)
m = round(m*100, 2)
return m
def meteor_so_far(refs, preds):
scores, m = corpus_meteor(refs, preds)
m = round(m*100, 2)
ret = ''
ret += ('for %s functions\n' % (len(preds)))
ret += ('M %s\n' % (m))
#return scores, m, ret
return ret
def re_0002(i):
# split camel case and remove special characters
tmp = i.group(0)
if len(tmp) > 1:
if tmp.startswith(' '):
return tmp
else:
return '{} {}'.format(tmp[0], tmp[1])
else:
return ' '.format(tmp)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('input', type=str, default=None)
parser.add_argument('--data', dest='dataprep', type=str, default='../javastmt/output')
parser.add_argument('--outdir', dest='outdir', type=str, default='outdir')
parser.add_argument('--challenge', action='store_true', default=False)
parser.add_argument('--obfuscate', action='store_true', default=False)
parser.add_argument('--sbt', action='store_true', default=False)
parser.add_argument('--lim-overlap', dest='limoverlap', type=int, default=-1)
parser.add_argument('--tdats-filename', dest='tdatsfilename', type=str, default='tdats.test')
parser.add_argument('--coms-filename', dest='comsfilename', type=str, default='coms.test')
parser.add_argument('--sentence-bleus', dest='sentencebleus', action='store_true', default=False)
args = parser.parse_args()
outdir = args.outdir
dataprep = args.dataprep
input_file = args.input
lim_overlap = args.limoverlap
tdatsfilename = args.tdatsfilename
comsfilename = args.comsfilename
sentencebleus = args.sentencebleus
if input_file is None:
print('Please provide an input file to test')
exit()
if lim_overlap != -1:
prep('preparing tdats list... ')
tdats = dict()
tdatsf = open('%s/%s' % (dataprep, tdatsfilename), 'r')
for c, line in enumerate(tdatsf):
(fid, tdat) = line.split('<SEP>')
fid = int(fid)
tdat = tdat.split()
tdat = fil(tdat)
tdats[fid] = tdat
tdatsf.close()
drop()
prep('preparing predictions list... ')
preds = dict()
predicts = open(input_file, 'r')
for c, line in enumerate(predicts):
(fid, pred) = line.split('\t')
fid = int(fid)
pred = pred.split()
pred = fil(pred)
preds[fid] = pred
predicts.close()
drop()
re_0001_ = re.compile(r'([^a-zA-Z0-9 ])|([a-z0-9_][A-Z])')
if(sentencebleus):
bfn = os.path.basename(input_file)
bfn = os.path.splitext(bfn)[0]
bleusf = open('{}/bleus/{}.tsv'.format(outdir, bfn), 'w')
refs = list()
newpreds = list()
d = 0
targets = open('%s/%s' % (dataprep, comsfilename), 'r')
for line in targets:
(fid, com) = line.split('<SEP>')
fid = int(fid)
com = com.split()
com = fil(com)
if len(com) < 1:
continue
if lim_overlap != -1:
t = list(set(com) & set(tdats[fid][:12]))
overlap = len(t) #/ len(set(com))
if overlap != lim_overlap:
continue
try:
newpreds.append(preds[fid])
if(sentencebleus):
Bas = corpus_bleu([[com]], [preds[fid]])
B1s = corpus_bleu([[com]], [preds[fid]], weights=(1,0,0,0))
B2s = corpus_bleu([[com]], [preds[fid]], weights=(0,1,0,0))
B3s = corpus_bleu([[com]], [preds[fid]], weights=(0,0,1,0))
B4s = corpus_bleu([[com]], [preds[fid]], weights=(0,0,0,1))
Bas = round(Bas * 100, 4)
B1s = round(B1s * 100, 4)
B2s = round(B2s * 100, 4)
B3s = round(B3s * 100, 4)
B4s = round(B4s * 100, 4)
bleusf.write('{}\t{}\t{}\t{}\t{}\t{}\n'.format(fid, Bas, B1s, B2s, B3s, B4s))
except Exception as ex:
#newpreds.append([])
continue
refs.append([com])
if(sentencebleus):
bleusf.close()
print('final status')
print(meteor_so_far(refs, newpreds))