-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsampling.py
184 lines (125 loc) · 5.89 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from xunet import XUNet
import torch
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from einops import rearrange
import time
from SRNdataset import dataset, MultiEpochsDataLoader
from tensorboardX import SummaryWriter
import os
import glob
from PIL import Image
import random
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model',type=str, default="./trained_model.pt")
parser.add_argument('--target',type=str, default="./data/SRN/cars_train/a4d535e1b1d3c153ff23af07d9064736")
args = parser.parse_args()
imgsize = 64
data_imgs = []
data_Rs = []
data_Ts = []
for img_filename in sorted(glob.glob(args.target + "/rgb/*.png")):
img = Image.open(img_filename)
img = img.resize((imgsize, imgsize))
img = np.array(img) / 255 * 2 - 1
img = img.transpose(2,0,1)[:3].astype(np.float32)
data_imgs.append(img)
pose_filename = os.path.join(args.target, 'pose', os.path.basename(img_filename)[:-4]+".txt")
pose = np.array(open(pose_filename).read().strip().split()).astype(float).reshape((4,4))
data_Rs.append(pose[:3, :3])
data_Ts.append(pose[:3, 3])
data_K = np.array(open(os.path.join(args.target, 'intrinsics', os.path.basename(img_filename)[:-4]+".txt")).read().strip().split()).astype(float).reshape((3,3))
data_K = torch.tensor(data_K)
model = XUNet(H=imgsize, W=imgsize, ch=128)
model = torch.nn.DataParallel(model)
model.to('cuda')
ckpt = torch.load(args.model)
model.load_state_dict(ckpt['model'])
def logsnr_schedule_cosine(t, *, logsnr_min=-20., logsnr_max=20.):
b = np.arctan(np.exp(-.5 * logsnr_max))
a = np.arctan(np.exp(-.5 * logsnr_min)) - b
return -2. * torch.log(torch.tan(a * t + b))
def xt2batch(x, logsnr, z, R, T, K):
b = x.shape[0]
return {
'x': x.cuda(),
'z': z.cuda(),
'logsnr': torch.stack([logsnr_schedule_cosine(torch.zeros_like(logsnr)), logsnr], dim=1).cuda(),
'R': R.cuda(),
't': T.cuda(),
'K':K[None].repeat(b,1,1).cuda(),
}
@torch.no_grad()
def p_mean_variance(model, x, z, R, T, K, logsnr, logsnr_next, w):
w = w[:, None, None, None]
b = w.shape[0]
c = - torch.special.expm1(logsnr - logsnr_next)
squared_alpha, squared_alpha_next = logsnr.sigmoid(), logsnr_next.sigmoid()
squared_sigma, squared_sigma_next = (-logsnr).sigmoid(), (-logsnr_next).sigmoid()
alpha, sigma, alpha_next = map(lambda x: x.sqrt(), (squared_alpha, squared_sigma, squared_alpha_next))
# batch = xt2batch(x, logsnr.repeat(b), z, R)
batch = xt2batch(x, logsnr.repeat(b), z, R, T, K)
pred_noise = model(batch, cond_mask= torch.tensor([True]*b)).detach().cpu()
batch['x'] = torch.randn_like(x).cuda()
pred_noise_unconditioned = model(batch, cond_mask= torch.tensor([False]*b)).detach().cpu()
pred_noise_final = (1+w) * pred_noise - w * pred_noise_unconditioned
z = z.detach().cpu()
z_start = (z - sigma * pred_noise_final) / alpha
z_start.clamp_(-1., 1.)
model_mean = alpha_next * (z * (1 - c) / alpha + c * z_start)
posterior_variance = squared_sigma_next * c
return model_mean, posterior_variance
@torch.no_grad()
def p_sample(model, z, x, R, T, K, logsnr, logsnr_next, w):
model_mean, model_variance = p_mean_variance(model,
x=x,
z=z,
R=R,
T=T, K=K, logsnr=logsnr, logsnr_next=logsnr_next, w=w)
if logsnr_next==0:
return model_mean
return model_mean + model_variance.sqrt() * torch.randn_like(x).cpu()
@torch.no_grad()
def sample(model, record, target_R, target_T, K, w, timesteps=256):
b = w.shape[0]
img = torch.randn_like(torch.tensor(record[0][0]))
logsnrs = logsnr_schedule_cosine(torch.linspace(1., 0., timesteps+1)[:-1])
logsnr_nexts = logsnr_schedule_cosine(torch.linspace(1., 0., timesteps+1)[1:])
for logsnr, logsnr_next in tqdm(zip(logsnrs, logsnr_nexts), total=len(logsnrs), desc='diffusion loop', position=1, leave=False): # [1, ..., 0] = size is 257
condition_img, condition_R, condition_T = random.choice(record)
condition_img = torch.tensor(condition_img)
condition_R = torch.tensor(condition_R)
condition_T = torch.tensor(condition_T)
R = torch.stack([condition_R, target_R], 0)[None].repeat(b, 1, 1, 1)
T = torch.stack([condition_T, target_T], 0)[None].repeat(b, 1, 1)
condition_img = condition_img
img = p_sample(model,
z=img,
x=condition_img,
R=R,
T=T,
K=K,
logsnr=logsnr, logsnr_next=logsnr_next,
w=w)
return img.cpu().numpy()
w = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7])
b = w.shape[0]
record = [[data_imgs[0][None].repeat(b, axis=0),
data_Rs[0],
data_Ts[0]]]
os.makedirs(f'sampling/0', exist_ok=True)
Image.fromarray(((data_imgs[0].transpose(1,2,0)+1)*127.5).astype(np.uint8)).save('sampling/0/gt.png')
with torch.no_grad():
step = 1
for gt, R, T in tqdm(zip(data_imgs[1:], data_Rs[1:], data_Ts[1:]), total=len(data_imgs[1:]), desc='view loop', position=0):
R = torch.tensor(R)
T = torch.tensor(T)
img = sample(model, record=record, target_R=R, target_T=T, K=data_K, w=w)
record.append([img, R.cpu().numpy(), T.cpu().numpy()])
os.makedirs(f'sampling/{step}', exist_ok=True)
Image.fromarray(((gt.transpose(1,2,0)+1)*127.5).astype(np.uint8)).save(f'sampling/{step}/gt.png')
for i in w:
Image.fromarray(((img[i].transpose(1,2,0)+1)*127.5).astype(np.uint8)).save(f'sampling/{step}/{i}.png')
step += 1