forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark.py
263 lines (236 loc) · 9.98 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
import time
from concurrent.futures import ThreadPoolExecutor
import concurrent
import numpy as np
from tqdm import tqdm
import json
import argparse
from typing import List, Tuple
# Execute single request
def perform_request(session, url, payload, headers):
start_time = time.perf_counter()
with session.post(url, json=payload, headers=headers, stream=True) as response:
response.raise_for_status()
first_token_time = None
last_token_time = 0
first_token_inference_time = None
next_token_inference_time = None
next_token_time = []
i = 0
for line in response.iter_lines():
token_time = time.perf_counter() - start_time
if line:
data = line.decode('utf-8').strip()
if data.startswith('data: '):
data = data[len('data: '):]
i = i + 1
try:
json_data = json.loads(data)
if 'choices' in json_data and len(json_data['choices']) > 0:
choice = json_data['choices'][0]
if 'finish_reason' in choice and (choice['finish_reason'] == 'length' or choice['finish_reason'] == 'stop'):
if 'first_token_time' in choice and isinstance(choice['first_token_time'], float):
first_token_inference_time = choice['first_token_time']
if 'rest_token_time' in choice and isinstance(choice['rest_token_time'], float):
next_token_inference_time = choice['rest_token_time']
else:
if first_token_time is None:
first_token_time = token_time
else:
next_token_time.append(token_time - last_token_time)
last_token_time = token_time
except json.JSONDecodeError:
pass
end_time = time.perf_counter()
return (
first_token_time,
np.mean(next_token_time),
end_time - start_time,
first_token_inference_time,
next_token_inference_time,
)
def extend_list_to_length(lst, target_length):
if target_length <= len(lst):
return lst[:]
times = target_length // len(lst)
remainder = target_length % len(lst)
extended_list = lst * times + lst[:remainder]
return extended_list
def benchmark(
llm_urls,
prompt,
num_warmup_requests,
num_requests,
max_concurrent_requests,
max_tokens,
prompt_length,
):
headers = {"Content-Type": "application/json"}
first_token_latencies = []
next_token_latencies = []
total_responce_times = []
first_token_inference_times = []
next_token_inference_times = []
cur_url_index = 0
num_requests = num_requests + num_warmup_requests
with requests.Session() as session:
with ThreadPoolExecutor(max_workers=max_concurrent_requests) as executor:
llm_url = llm_urls[cur_url_index]
cur_url_index = (cur_url_index + 1) % len(llm_urls)
cur_llm_urls = extend_list_to_length(llm_urls, max_concurrent_requests)
cur_len = len(cur_llm_urls)
payload = {
"model": "Meta-Llama-3-8B-Instruct",
"prompt": prompt,
"max_tokens": max_tokens,
"stream": True,
# for vllm openai api server
"ignore_eos": True,
"n": 1,
"best_of": 1,
"use_beam_search": False,
"temperature": 0.0,
"top_p": 1.0,
}
futures = [
executor.submit(
perform_request,
session,
cur_llm_urls[index % cur_len],
payload,
headers,
)
for index in range(num_requests)
]
phase = "Benchmarking"
with tqdm(total=num_requests, desc=phase, unit="req", ncols=100) as pbar:
cur_index = 0
for future in concurrent.futures.as_completed(futures):
if cur_index == num_warmup_requests:
start_time = time.perf_counter()
try:
(
first_token_latency,
next_token_latency,
total_responce_time,
first_token_inference_time,
next_token_inference_time,
) = future.result()
cur_index = cur_index + 1
if cur_index > num_warmup_requests:
first_token_latencies.append(first_token_latency)
next_token_latencies.append(next_token_latency)
total_responce_times.append(total_responce_time)
if first_token_inference_time:
first_token_inference_times.append(
first_token_inference_time
)
if next_token_inference_time:
next_token_inference_times.append(next_token_inference_time)
except Exception as e:
print(f"Request failed: {e}")
pbar.update(1)
total_time = time.perf_counter() - start_time
log_file = f"{max_concurrent_requests}.log"
num_requests = num_requests - num_warmup_requests
with open(log_file, "w") as file:
print(
f"Total time for {num_requests} requests with {max_concurrent_requests} concurrent requests: {total_time} seconds.",
file=file,
)
print(
f"Average response time: {np.mean(total_responce_times)}", file=file
)
print(
f"Token throughput: {num_requests * max_tokens / total_time}",
file=file,
)
print(
f"Total token throughput: {(max_tokens + prompt_length) * num_requests / total_time}",
file=file,
)
print(file=file)
if first_token_latencies:
average_first_token_latency = sum(first_token_latencies) / len(
first_token_latencies
)
p90_first_token_latency = np.percentile(first_token_latencies, 90)
p95_first_token_latency = np.percentile(first_token_latencies, 95)
print(
f"Average first token latency: {average_first_token_latency * 1000} milliseconds.",
file=file,
)
print(
f"P90 first token latency: {p90_first_token_latency * 1000} milliseconds.",
file=file,
)
print(
f"P95 first token latency: {p95_first_token_latency * 1000} milliseconds.",
file=file,
)
print(file=file)
if next_token_latencies:
average_next_token_latency = sum(next_token_latencies) / len(
next_token_latencies
)
p90_next_token_latency = np.percentile(next_token_latencies, 90)
p95_next_token_latency = np.percentile(next_token_latencies, 95)
print(
f"Average next token latency: {average_next_token_latency * 1000} milliseconds.",
file=file,
)
print(
f"P90 next token latency: {p90_next_token_latency * 1000} milliseconds.",
file=file,
)
print(
f"P95 next token latency: {p95_next_token_latency * 1000} milliseconds.",
file=file,
)
print(file=file)
LLM_URLS = [f"http://localhost:{PORT}/v1/completions" for PORT in [8000]]
parser = argparse.ArgumentParser(description="Set prompt length.")
parser.add_argument(
"--prompt_length",
type=int,
choices=[32, 128, 1024, 2048],
default=1024,
help="Length of the prompt: 32, 1024, or 2048",
)
parser.add_argument(
"--max_concurrent_requests",
type=int,
nargs="+",
default=[1, 2, 4, 5, 6],
help="List of maximum concurrent requests to test.",
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=128,
help="Maximum number of new tokens that the model will generate per request.",
)
args = parser.parse_args()
PROMPT_LENGTH = args.prompt_length
PROMPT = open(f"prompt/{PROMPT_LENGTH}.txt", "r").read()
MAX_TOKENS = args.max_new_tokens
for MAX_CONCURRENT_REQUESTS in args.max_concurrent_requests:
NUM_WARMUP = 5 * MAX_CONCURRENT_REQUESTS
NUM_REQUESTS = 30 * MAX_CONCURRENT_REQUESTS
benchmark(LLM_URLS, PROMPT, NUM_WARMUP, NUM_REQUESTS, MAX_CONCURRENT_REQUESTS, MAX_TOKENS, PROMPT_LENGTH)