-
Notifications
You must be signed in to change notification settings - Fork 42
/
dataset.py
428 lines (351 loc) · 18.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import random
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as TT
from accelerate.logging import get_logger
from torch.utils.data import Dataset, Sampler
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger(__name__)
HEIGHT_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536]
WIDTH_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536]
FRAME_BUCKETS = [16, 24, 32, 48, 64, 80]
class VideoDataset(Dataset):
def __init__(
self,
data_root: str,
dataset_file: Optional[str] = None,
caption_column: str = "text",
video_column: str = "video",
max_num_frames: int = 49,
id_token: Optional[str] = None,
height_buckets: List[int] = None,
width_buckets: List[int] = None,
frame_buckets: List[int] = None,
load_tensors: bool = False,
random_flip: Optional[float] = None,
image_to_video: bool = False,
) -> None:
super().__init__()
self.data_root = Path(data_root)
self.dataset_file = dataset_file
self.caption_column = caption_column
self.video_column = video_column
self.max_num_frames = max_num_frames
self.id_token = f"{id_token.strip()} " if id_token else ""
self.height_buckets = height_buckets or HEIGHT_BUCKETS
self.width_buckets = width_buckets or WIDTH_BUCKETS
self.frame_buckets = frame_buckets or FRAME_BUCKETS
self.load_tensors = load_tensors
self.random_flip = random_flip
self.image_to_video = image_to_video
self.resolutions = [
(f, h, w) for h in self.height_buckets for w in self.width_buckets for f in self.frame_buckets
]
# Two methods of loading data are supported.
# - Using a CSV: caption_column and video_column must be some column in the CSV. One could
# make use of other columns too, such as a motion score or aesthetic score, by modifying the
# logic in CSV processing.
# - Using two files containing line-separate captions and relative paths to videos.
# For a more detailed explanation about preparing dataset format, checkout the README.
if dataset_file is None:
(
self.prompts,
self.video_paths,
) = self._load_dataset_from_local_path()
else:
(
self.prompts,
self.video_paths,
) = self._load_dataset_from_csv()
if len(self.video_paths) != len(self.prompts):
raise ValueError(
f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
)
self.video_transforms = transforms.Compose(
[
transforms.RandomHorizontalFlip(random_flip)
if random_flip
else transforms.Lambda(self.identity_transform),
transforms.Lambda(self.scale_transform),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
@staticmethod
def identity_transform(x):
return x
@staticmethod
def scale_transform(x):
return x / 255.0
def __len__(self) -> int:
return len(self.video_paths)
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
# Here, index is actually a list of data objects that we need to return.
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
# to have information about num_frames, height and width. Since this is not stored
# as metadata, we need to read the video to get this information. You could read this
# information without loading the full video in memory, but we do it anyway. In order
# to not load the video twice (once to get the metadata, and once to return the loaded video
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
# to yield, we yield the cache data instead of indices. So, this special check ensures
# that data is not loaded a second time. PRs are welcome for improvements.
return index
if self.load_tensors:
image_latents, video_latents, prompt_embeds = self._preprocess_video(self.video_paths[index])
# This is hardcoded for now.
# The VAE's temporal compression ratio is 4.
# The VAE's spatial compression ratio is 8.
latent_num_frames = video_latents.size(1)
if latent_num_frames % 2 == 0:
num_frames = latent_num_frames * 4
else:
num_frames = (latent_num_frames - 1) * 4 + 1
height = video_latents.size(2) * 8
width = video_latents.size(3) * 8
return {
"prompt": prompt_embeds,
"image": image_latents,
"video": video_latents,
"video_metadata": {
"num_frames": num_frames,
"height": height,
"width": width,
},
}
else:
image, video, _ = self._preprocess_video(self.video_paths[index])
return {
"prompt": self.id_token + self.prompts[index],
"image": image,
"video": video,
"video_metadata": {
"num_frames": video.shape[0],
"height": video.shape[2],
"width": video.shape[3],
},
}
def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str]]:
if not self.data_root.exists():
raise ValueError("Root folder for videos does not exist")
prompt_path = self.data_root.joinpath(self.caption_column)
video_path = self.data_root.joinpath(self.video_column)
if not prompt_path.exists() or not prompt_path.is_file():
raise ValueError(
"Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
)
if not video_path.exists() or not video_path.is_file():
raise ValueError(
"Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
)
with open(prompt_path, "r", encoding="utf-8") as file:
prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
with open(video_path, "r", encoding="utf-8") as file:
video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
if not self.load_tensors and any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
)
return prompts, video_paths
def _load_dataset_from_csv(self) -> Tuple[List[str], List[str]]:
df = pd.read_csv(self.dataset_file)
prompts = df[self.caption_column].tolist()
video_paths = df[self.video_column].tolist()
video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]
if any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
)
return prompts, video_paths
def _preprocess_video(self, path: Path) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
r"""
Loads a single video, or latent and prompt embedding, based on initialization parameters.
If returning a video, returns a [F, C, H, W] video tensor, and None for the prompt embedding. Here,
F, C, H and W are the frames, channels, height and width of the input video.
If returning latent/embedding, returns a [F, C, H, W] latent, and the prompt embedding of shape [S, D].
F, C, H and W are the frames, channels, height and width of the latent, and S, D are the sequence length
and embedding dimension of prompt embeddings.
"""
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
indices = list(range(0, video_num_frames, video_num_frames // self.max_num_frames))
frames = video_reader.get_batch(indices)
frames = frames[: self.max_num_frames].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0)
image = frames[:1].clone() if self.image_to_video else None
return image, frames, None
def _load_preprocessed_latents_and_embeds(self, path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
filename_without_ext = path.name.split(".")[0]
pt_filename = f"{filename_without_ext}.pt"
# The current path is something like: /a/b/c/d/videos/00001.mp4
# We need to reach: /a/b/c/d/video_latents/00001.pt
image_latents_path = path.parent.parent.joinpath("image_latents")
video_latents_path = path.parent.parent.joinpath("video_latents")
embeds_path = path.parent.parent.joinpath("prompt_embeds")
if (
not video_latents_path.exists()
or not embeds_path.exists()
or (self.image_to_video and not image_latents_path.exists())
):
raise ValueError(
f"When setting the load_tensors parameter to `True`, it is expected that the `{self.data_root=}` contains two folders named `video_latents` and `prompt_embeds`. However, these folders were not found. Please make sure to have prepared your data correctly using `prepare_data.py`. Additionally, if you're training image-to-video, it is expected that an `image_latents` folder is also present."
)
if self.image_to_video:
image_latent_filepath = image_latents_path.joinpath(pt_filename)
video_latent_filepath = video_latents_path.joinpath(pt_filename)
embeds_filepath = embeds_path.joinpath(pt_filename)
if not video_latent_filepath.is_file() or not embeds_filepath.is_file():
if self.image_to_video:
image_latent_filepath = image_latent_filepath.as_posix()
video_latent_filepath = video_latent_filepath.as_posix()
embeds_filepath = embeds_filepath.as_posix()
raise ValueError(
f"The file {video_latent_filepath=} or {embeds_filepath=} could not be found. Please ensure that you've correctly executed `prepare_dataset.py`."
)
images = (
torch.load(image_latent_filepath, map_location="cpu", weights_only=True) if self.image_to_video else None
)
latents = torch.load(video_latent_filepath, map_location="cpu", weights_only=True)
embeds = torch.load(embeds_filepath, map_location="cpu", weights_only=True)
return images, latents, embeds
class VideoDatasetWithResizing(VideoDataset):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def _preprocess_video(self, path: Path) -> torch.Tensor:
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
nearest_frame_bucket = min(
self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
)
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
image = frames[:1].clone() if self.image_to_video else None
return image, frames, None
def _find_nearest_resolution(self, height, width):
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
return nearest_res[1], nearest_res[2]
class VideoDatasetWithResizeAndRectangleCrop(VideoDataset):
def __init__(self, video_reshape_mode: str = "center", *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.video_reshape_mode = video_reshape_mode
def _resize_for_rectangle_crop(self, arr, image_size):
reshape_mode = self.video_reshape_mode
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
arr = resize(
arr,
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
interpolation=InterpolationMode.BICUBIC,
)
else:
arr = resize(
arr,
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
interpolation=InterpolationMode.BICUBIC,
)
h, w = arr.shape[2], arr.shape[3]
arr = arr.squeeze(0)
delta_h = h - image_size[0]
delta_w = w - image_size[1]
if reshape_mode == "random" or reshape_mode == "none":
top = np.random.randint(0, delta_h + 1)
left = np.random.randint(0, delta_w + 1)
elif reshape_mode == "center":
top, left = delta_h // 2, delta_w // 2
else:
raise NotImplementedError
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
return arr
def _preprocess_video(self, path: Path) -> torch.Tensor:
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
nearest_frame_bucket = min(
self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
)
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
frames_resized = self._resize_for_rectangle_crop(frames, nearest_res)
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
image = frames[:1].clone() if self.image_to_video else None
return image, frames, None
def _find_nearest_resolution(self, height, width):
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
return nearest_res[1], nearest_res[2]
class BucketSampler(Sampler):
r"""
PyTorch Sampler that groups 3D data by height, width and frames.
Args:
data_source (`VideoDataset`):
A PyTorch dataset object that is an instance of `VideoDataset`.
batch_size (`int`, defaults to `8`):
The batch size to use for training.
shuffle (`bool`, defaults to `True`):
Whether or not to shuffle the data in each batch before dispatching to dataloader.
drop_last (`bool`, defaults to `False`):
Whether or not to drop incomplete buckets of data after completely iterating over all data
in the dataset. If set to True, only batches that have `batch_size` number of entries will
be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
and batches that do not have `batch_size` number of entries will also be yielded.
"""
def __init__(
self, data_source: VideoDataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False
) -> None:
self.data_source = data_source
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
self.buckets = {resolution: [] for resolution in data_source.resolutions}
self._raised_warning_for_drop_last = False
def __len__(self):
if self.drop_last and not self._raised_warning_for_drop_last:
self._raised_warning_for_drop_last = True
logger.warning(
"Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
)
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
def __iter__(self):
for index, data in enumerate(self.data_source):
video_metadata = data["video_metadata"]
f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"]
self.buckets[(f, h, w)].append(data)
if len(self.buckets[(f, h, w)]) == self.batch_size:
if self.shuffle:
random.shuffle(self.buckets[(f, h, w)])
yield self.buckets[(f, h, w)]
del self.buckets[(f, h, w)]
self.buckets[(f, h, w)] = []
if self.drop_last:
return
for fhw, bucket in list(self.buckets.items()):
if len(bucket) == 0:
continue
if self.shuffle:
random.shuffle(bucket)
yield bucket
del self.buckets[fhw]
self.buckets[fhw] = []