-
Notifications
You must be signed in to change notification settings - Fork 104
/
persam_video.py
215 lines (181 loc) · 9.25 KB
/
persam_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse, os
from PIL import Image
from os import path
import numpy as np
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from per_segment_anything import SamPredictor, sam_model_registry
from davis2017.davis import DAVISTestDataset, all_to_onehot
from eval_video import eval_davis_result
def main(args):
if args.eval:
eval_davis_result(args.output_path, args.davis_path)
return
# Dataset
print("Running on DAVIS", args.dataset_set)
test_dataset = DAVISTestDataset(args.davis_path, imset=args.dataset_set + '/val.txt')
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1)
palette = Image.open(path.expanduser(os.path.join(args.davis_path, 'Annotations/480p/bike-packing/00000.png'))).getpalette()
# Load SAM
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
predictor = SamPredictor(sam)
# Start eval
for iter, data in enumerate(test_loader):
rgb = data['rgb'].cpu().numpy()
msk = data['gt'][0].cpu().numpy()
info = data['info']
name = info['name'][0]
os.makedirs(args.output_path, exist_ok=True)
L = os.listdir(args.output_path)
print("Processing Video", name, "....")
if name in L:
print("File", name, "exists in", args.output_path, ", skip...")
continue
num_obj = len(info['labels'][0])
frame_num = rgb.shape[1]
save_path = args.output_path + '/{}/'.format(name)
os.makedirs(save_path, exist_ok=True)
first_frame_image = rgb[0, 0]
first_frame_mask = msk[:, 0] * args.exp
fore_feat_list = []
# Foreground features
input_boxes = []
for k in range(msk[:, 0].shape[0]):
input_boxes.append(msk[:, 0][k])
for obj in range(num_obj):
print("Processing Object", obj)
frame_image = first_frame_image
obj_mask = first_frame_mask[obj].reshape(first_frame_mask.shape[1], first_frame_mask.shape[2], 1)
obj_mask = np.concatenate((obj_mask, np.zeros((obj_mask.shape[0], obj_mask.shape[1], 2), dtype=obj_mask.dtype)), axis=2)
obj_mask = predictor.set_image(frame_image, obj_mask)
if obj == 0:
img_feat1 = predictor.features.squeeze().permute(1, 2, 0)
obj_mask = F.interpolate(obj_mask, size=img_feat1.shape[0:2], mode="bilinear")
obj_mask = obj_mask.squeeze()[0]
fore_feat = img_feat1[obj_mask > 0]
if fore_feat.shape[0] == 0:
fore_feat_list.append(fore_feat.mean(0))
print("Find a small object in", name, "Object", obj)
continue
fore_feat_mean = fore_feat.mean(0)
fore_feat_max = torch.max(fore_feat, dim=0)[0]
fore_feat = (fore_feat_max / 2 + fore_feat_mean / 2).unsqueeze(0)
fore_feat = fore_feat / fore_feat.norm(dim=-1, keepdim=True)
fore_feat_list.append(fore_feat)
for i in range (1, frame_num):
current_img = rgb[0, i]
predictor.set_image(current_img)
# pred masks
test_feat = predictor.features.squeeze()
C, htest, wtest = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, htest * wtest)
concat_mask = np.zeros((1, first_frame_mask.shape[1], first_frame_mask.shape[2]), dtype=np.uint8)
for j in range(min(len(fore_feat_list), len(input_boxes))):
# Cosine similarity
fore_feat = fore_feat_list[j]
sim = fore_feat @ test_feat # 1, h*w
sim = sim.reshape(1, 1, htest, wtest)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
mask_sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Top-k point selection
w, h = mask_sim.shape
topk_xy_i, topk_label_i = point_selection(mask_sim, topk=args.topk)
topk_xy = topk_xy_i
topk_label = topk_label_i
if args.center:
topk_label = np.concatenate([topk_label, [1]], axis=0)
if args.box_prompt:
center, input_box_ = get_box_prompt(input_boxes[j], args.threshold)
if args.center:
topk_xy = np.concatenate((topk_xy, center), axis=0)
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box_[None, :],
multimask_output=True)
else:
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
if args.large:
masks_ = masks
mask_num = np.array([np.sum(masks_[0]), np.sum(masks_[1]), np.sum(masks_[2])], dtype=np.uint8)
ic_index = np.argmax(mask_num, axis=0).astype(np.uint8)
else:
ic_index = 0
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[ic_index: ic_index + 1, :, :],
multimask_output=True)
ic_index = np.argmax(scores)
# box refine
y, x = np.nonzero(masks[ic_index])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[ic_index: ic_index + 1, :, :],
multimask_output=True,
return_logits=True)
ic_index = np.argmax(scores)
concat_mask = np.concatenate((concat_mask, masks[ic_index].reshape(1, masks.shape[1], masks.shape[2])), axis=0)
current_mask_pred = np.argmax(concat_mask, axis=0).astype(np.uint8)
output = Image.fromarray(current_mask_pred)
output.putpalette(palette)
output.save(save_path + '{:05d}.png'.format(i))
if args.box_prompt:
cur_labels = np.unique(current_mask_pred)
cur_labels = cur_labels[cur_labels!=0]
input_boxes = all_to_onehot(current_mask_pred, cur_labels)
print(f"Finish predict video: {name}")
eval_davis_result(args.output_path, args.davis_path)
def get_box_prompt(img, threshold):
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
cmin = 0 if cmin - threshold <= 0 else cmin - threshold
rmin = 0 if rmin - threshold <= 0 else rmin - threshold
cmax = img.shape[1] if cmax + threshold >= img.shape[1] else cmax + threshold
rmax = img.shape[0] if rmax + threshold >= img.shape[0] else rmax + threshold
return np.array([[(cmin + cmax) // 2, (rmin + rmax) // 2]]), np.array([cmin,rmin,cmax,rmax]) # x1,y1,x2,y2
def point_selection(mask_sim, topk=1):
w, h = mask_sim.shape
topk_xy = mask_sim.flatten(0).topk(topk)[1]
topk_x = (topk_xy // h).unsqueeze(0)
topk_y = (topk_xy - topk_x * h)
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
topk_label = np.array([1] * topk)
topk_xy = topk_xy.cpu().numpy()
return topk_xy, topk_label
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--output_path", type=str, help="output path", required=True)
parser.add_argument('--davis_path', default='./DAVIS/2017')
parser.add_argument("--dataset_set", type=str, help="2017", default='2017')
parser.add_argument("--topk", type=int, help="choose topk points", default=2)
parser.add_argument("--exp", type=int, help="expand mask value to", default=215)
parser.add_argument("--threshold", type=int, help="the threshold for bounding box expansion", default=10)
parser.add_argument("--eval", action="store_true", help="eval only")
parser.add_argument("--box_prompt", action="store_true", help="whether use box prompt")
parser.add_argument("--large", action="store_true", help="whether choose largest mask for prompting after stage 1")
parser.add_argument("--center", action="store_true", help="whether prompt with center")
parser.set_defaults(box_prompt=True)
parser.set_defaults(large=True)
parser.set_defaults(center=True)
args = parser.parse_args()
print(args)
main(args)