-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodality_cyclic_sample.py
216 lines (190 loc) · 10.3 KB
/
modality_cyclic_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
Like score_sampling.py, but use a noisy image classifier to guide the sampling
process towards more realistic images.
"""
import os
import sys
import argparse
import random
import numpy as np
import torch as th
import blobfile as bf
from pathlib import Path
from skimage import morphology
from sklearn.metrics import roc_auc_score, jaccard_score
from datasets import loader
from configs import get_config
from utils import logger
from utils.script_util import create_gaussian_diffusion, create_score_model
from utils.binary_metrics import assd_metric, sensitivity_metric, precision_metric
sys.path.append(str(Path.cwd()))
def normalize(img, _min=None, _max=None):
_min = img.min()
_max = img.max()
normalized_img = (img - _min) / (_max - _min)
return normalized_img
def dice_score(pred, targs):
pred = (pred>0.5)
pred = pred.astype(int)
targs = targs.astype(int)
return 2. * (pred*targs).sum() / (pred+targs).sum()
def main(args):
use_gpus = args.gpu_id
os.environ["CUDA_VISIBLE_DEVICES"] = str(use_gpus)
config = get_config.file_from_dataset(args.dataset)
if args.experiment_name_forward != 'None':
experiment_name = args.experiment_name_forward
else:
raise Exception("Experiment name does exit")
logger.configure(Path(experiment_name) / "score_train",
format_strs=["log", "stdout", "csv", "tensorboard"])
logger.configure(Path(experiment_name) / "score_train",
format_strs=["log", "stdout", "csv", "tensorboard"])
logger.log("creating loader...")
test_loader = loader.get_data_loader(args.dataset, args.data_dir, config, args.input, split_set='test',
generator=False)
logger.log("creating model and diffusion...")
if args.model_name == 'unet':
image_level_cond_forward = False
image_level_cond_backward = False
elif args.model_name == 'diffusion':
image_level_cond_forward = True
image_level_cond_backward = False
else:
raise Exception("Model name does exit")
diffusion = create_gaussian_diffusion(config, args.timestep_respacing)
model_forward = create_score_model(config, image_level_cond_forward)
model_backward = create_score_model(config, image_level_cond_backward)
filename = "model100000.pt"
with bf.BlobFile(bf.join(logger.get_dir(), filename), "rb") as f:
model_forward.load_state_dict(
th.load(f.name, map_location=th.device('cuda'))
)
model_forward.to(th.device('cuda'))
experiment_name_backward = f.name.split(experiment_name)[0] + args.experiment_name_backward + f.name.split(experiment_name)[1]
model_backward.load_state_dict(
th.load(experiment_name_backward, map_location=th.device('cuda'))
)
model_backward.to(th.device('cuda'))
if config.score_model.use_fp16:
model_forward.convert_to_fp16()
model_backward.convert_to_fp16()
model_forward.eval()
model_backward.eval()
logger.log("sampling...")
dice = np.zeros(100)
auc = np.zeros(1)
assd = np.zeros(1)
sensitivity = np.zeros(1)
precision = np.zeros(1)
jaccard = np.zeros(1)
num_batch = 0
num_sample = 0
img_true_all = np.zeros((len(test_loader.dataset), config.score_model.num_input_channels, config.score_model.image_size,
config.score_model.image_size))
img_pred_all = np.zeros((len(test_loader.dataset), config.score_model.num_input_channels, config.score_model.image_size,
config.score_model.image_size))
brain_mask_all = np.zeros((len(test_loader.dataset), config.score_model.num_input_channels, config.score_model.image_size, config.score_model.image_size))
test_data_seg_all = np.zeros((len(test_loader.dataset), config.score_model.num_input_channels,
config.score_model.image_size, config.score_model.image_size))
for test_data_dict in enumerate(test_loader):
model_kwargs = {}
### brats dataset ###
if args.dataset == 'brats':
test_data_input = test_data_dict[1].pop('input').cuda()
test_data_seg = test_data_dict[1].pop('seg')
brain_mask = test_data_dict[1].pop('brainmask')
brain_mask = (th.ones(brain_mask.shape) * (brain_mask > 0)).cuda()
test_data_seg = (th.ones(test_data_seg.shape) * (test_data_seg > 0)).cuda()
sample_fn = (
diffusion.p_sample_loop
)
sample = sample_fn(
model_forward, model_backward, test_data_input, num_batch,
(test_data_seg.shape[0], config.score_model.num_input_channels, config.score_model.image_size,
config.score_model.image_size),
model_name=args.model_name,
clip_denoised=config.sampling.clip_denoised, # is True, clip the denoised signal into [-1, 1].
model_kwargs=model_kwargs, # reconstruction = True
eta=config.sampling.eta,
model_forward_name=args.experiment_name_forward,
model_backward_name=args.experiment_name_backward,
ddim=args.use_ddim
)
num_batch += 1
img_true_all[num_sample:num_sample+test_data_input.shape[0]] = test_data_input.detach().cpu().numpy()
img_pred_all[num_sample:num_sample+test_data_input.shape[0]] = sample.cpu().numpy()
brain_mask_all[num_sample:num_sample+test_data_input.shape[0]] = brain_mask.cpu().numpy()
test_data_seg_all[num_sample:num_sample+test_data_input.shape[0]] = test_data_seg.cpu().numpy()
num_sample += test_data_input.shape[0]
logger.log("all the confidence maps from the testing set saved...")
if args.model_name == 'unet':
error_map = normalize((img_true_all - img_pred_all) ** 2)
elif args.model_name == 'diffusion':
filename_mask = "mask_forward_"+args.experiment_name_forward+'_backward_'+args.experiment_name_backward+".pt"
filename_x0 = "cyclic_predict_"+args.experiment_name_forward+'_backward_'+args.experiment_name_backward+".pt"
with bf.BlobFile(bf.join(logger.get_dir(), filename_mask), "rb") as f:
tensor_load_mask = th.load(f)
with bf.BlobFile(bf.join(logger.get_dir(), filename_x0), "rb") as f:
tensor_load_xpred = th.load(f)
load_gt_repeat = np.expand_dims(img_true_all, axis=0).repeat(tensor_load_mask.shape[0], axis=0)
error_map = (np.abs(tensor_load_xpred.numpy() - load_gt_repeat)) ** 2
mean_error_map = np.sum(error_map * (1-tensor_load_mask.numpy()), 0) / np.sum((1-tensor_load_mask.numpy()), 0)
error_map = normalize(np.where(np.isnan(mean_error_map), 0, mean_error_map))
logger.log("finding the best threshold...")
for thres in range(100):
mask_inpaint_input = np.where(thres / 1000 < error_map, 1.0, 0.0) * brain_mask_all
for num in range(len(test_loader.dataset)):
selem = morphology.disk(4)
shrunken_brain_mask = morphology.erosion(
brain_mask_all[num, 0, :, :], selem)
dice[thres] += dice_score(test_data_seg_all[num, 0, :, :],
(mask_inpaint_input[num, 0, :, :]*shrunken_brain_mask))
dice = dice / len(test_loader.dataset)
max_dice_index = np.argmax(dice)
max_dice = dice[max_dice_index]
logger.log("computing the matrixs...")
mask_inpaint_input = (np.where(max_dice_index / 1000 < error_map, 1.0, 0.0) * brain_mask_all)
for num in range(len(test_loader.dataset)):
selem = morphology.disk(4)
shrunken_brain_mask = morphology.erosion(brain_mask_all[num, 0, :, :], selem)
pred_thre = mask_inpaint_input[num, 0, :,:] * shrunken_brain_mask
assd += assd_metric(pred_thre, test_data_seg_all[num, 0, :, :])
sensitivity += sensitivity_metric(pred_thre, test_data_seg_all[num, 0, :, :])
precision += precision_metric(pred_thre, test_data_seg_all[num, 0, :, :])
pixel_wise_gt = (test_data_seg_all[num, 0, :, :].reshape(1, -1))[0, :]
jaccard += jaccard_score(pixel_wise_gt, (normalize(
np.array(mask_inpaint_input[num, 0, :, :])) * shrunken_brain_mask).astype(
int).reshape(1, -1)[0, :])
selem = morphology.disk(4)
shrunken_brain_mask = morphology.erosion(brain_mask_all[num, 0, :, :], selem)
pixel_wise_cls = (error_map[num, 0, :, :] * shrunken_brain_mask).reshape(1, -1)[0, :]
auc += roc_auc_score(pixel_wise_gt, pixel_wise_cls)
auc = auc / len(test_loader.dataset)
jaccard = jaccard / len(test_loader.dataset)
assd = assd / len(test_loader.dataset)
sensitivity = sensitivity / len(test_loader.dataset)
precision = precision / len(test_loader.dataset)
logger.log(f"dice: {max_dice}, auc: {auc}, jaccard: {jaccard}, assd: {assd}, sensitivity: {sensitivity}, precision: {precision}")
def reseed_random(seed):
random.seed(seed) # python random generator
np.random.seed(seed) # numpy random generator
th.manual_seed(seed)
th.cuda.manual_seed_all(seed)
th.backends.cudnn.deterministic = True
th.backends.cudnn.benchmark = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_id", help="the id of the gpu you want to use, like 0", type=int, default=0)
parser.add_argument("--dataset", help="brats", type=str, default='brats')
parser.add_argument("--input", help="input modality, choose from flair, t2, t1", type=str, default='flair')
parser.add_argument("--data_dir", help="data directory", type=str, default='./datasets/data')
parser.add_argument("--experiment_name_forward", help="forward model saving file name", type=str, default='unet_brats_flair_t2')
parser.add_argument("--experiment_name_backward", help="backward model saving file name", type=str, default='unet_brats_t2_flair')
parser.add_argument("--model_name", help="translated model: unet or diffusion", type=str, default='unet')
parser.add_argument("--use_ddim", help="if you want to use ddim during sampling, True or False", type=str, default='True')
parser.add_argument("--timestep_respacing", help="If you want to rescale timestep during sampling. enter the timestep you want to rescale the diffusion prcess to. If you do not wish to resale thetimestep, leave it blank or put 1000.", type=int,
default=100)
args = parser.parse_args()
print(args.dataset)
main(args)