-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_searching.py
61 lines (46 loc) · 2.26 KB
/
run_searching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.run.default_configuration import get_default_configuration
from nnunet.paths import default_plans_identifier
from nnunet.training.network_training.AdaptiveUNetTrainer_search import AdaptiveUNetTrainer_search
from nnunet.utilities.task_name_id_conversion import convert_id_to_task_name
def main():
parser = argparse.ArgumentParser()
parser.add_argument("network")
parser.add_argument("network_trainer")
parser.add_argument("task", help="can be task name or task id")
parser.add_argument("fold", help='0, 1, ..., 5 or \'all\'')
parser.add_argument("-c", "--continue_training", help="use this if you want to continue a training",
action="store_true")
parser.add_argument("-p", help="plans identifier. Only change this if you created a custom experiment planner",
default=default_plans_identifier, required=False)
args = parser.parse_args()
network = args.network
network_trainer = args.network_trainer
task = args.task
fold = args.fold
plans_identifier = args.p
if not task.startswith("Task"):
task_id = int(task)
task = convert_id_to_task_name(task_id)
if fold == 'all':
pass
else:
fold = int(fold)
plans_file, output_folder_name, dataset_directory, batch_dice, stage, \
trainer_class = get_default_configuration(network, task, network_trainer, plans_identifier)
if trainer_class is None:
raise RuntimeError("Could not find trainer class in nnunet.training.network_training")
assert issubclass(trainer_class,
AdaptiveUNetTrainer_search), "network_trainer was found but is not derived from AdaptiveUNetTrainer_search"
trainer = trainer_class(plans_file, fold, output_folder=output_folder_name, dataset_directory=dataset_directory,
batch_dice=batch_dice, stage=stage, unpack_data=True,
deterministic=False,
fp16=True)
validation_only = False
trainer.initialize(not validation_only)
if args.continue_training:
trainer.load_latest_checkpoint()
trainer.run_training()
if __name__ == "__main__":
main()