-
Notifications
You must be signed in to change notification settings - Fork 84
/
val.py
48 lines (43 loc) · 2.14 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) 2023, Zikang Zhou. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
import pytorch_lightning as pl
from torch_geometric.loader import DataLoader
from datasets import ArgoverseV2Dataset
from predictors import QCNet
from transforms import TargetBuilder
if __name__ == '__main__':
pl.seed_everything(2023, workers=True)
parser = ArgumentParser()
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--root', type=str, required=True)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--pin_memory', type=bool, default=True)
parser.add_argument('--persistent_workers', type=bool, default=True)
parser.add_argument('--accelerator', type=str, default='auto')
parser.add_argument('--devices', type=int, default=1)
parser.add_argument('--ckpt_path', type=str, required=True)
args = parser.parse_args()
model = {
'QCNet': QCNet,
}[args.model].load_from_checkpoint(checkpoint_path=args.ckpt_path)
val_dataset = {
'argoverse_v2': ArgoverseV2Dataset,
}[model.dataset](root=args.root, split='val',
transform=TargetBuilder(model.num_historical_steps, model.num_future_steps))
dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers,
pin_memory=args.pin_memory, persistent_workers=args.persistent_workers)
trainer = pl.Trainer(accelerator=args.accelerator, devices=args.devices, strategy='ddp')
trainer.validate(model, dataloader)