-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_eval.py
187 lines (163 loc) · 5.48 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import pickle
import numpy as np
import torch
import model
import sim_config
import training_utils
def run(
seed: int,
elbo: bool,
device,
eval_only,
init_path,
data_path,
sample,
data_config: sim_config.DataConfig,
roche_config: sim_config.RochConfig,
model_config: sim_config.ModelConfig,
optim_config: sim_config.OptimConfig,
eval_config: sim_config.EvalConfig,
encoder_output_dim=None,
ablate=False,
arg_itr=None,
result_path=None,
):
np.random.seed(seed)
torch.manual_seed(seed)
device = torch.device("cuda:" + str(device) if device != "c" and torch.cuda.is_available() else "cpu")
# data config
n_sample = sample
obs_dim = data_config.obs_dim
latent_dim = data_config.latent_dim
action_dim = data_config.action_dim
t_max = data_config.t_max
step_size = data_config.step_size
output_sigma = data_config.output_sigma
sparsity = data_config.sparsity
# optim config
lr = optim_config.lr
ode_method = optim_config.ode_method
if arg_itr is None:
niters = optim_config.niters
else:
niters = arg_itr
batch_size = optim_config.batch_size
with open(data_path, "rb") as f:
dg = pickle.load(f)
dg.set_device(device)
if not eval_only:
dg.set_train_size(n_sample)
print("Training with {} samples".format(n_sample))
# model config
encoder_latent_ratio = model_config.encoder_latent_ratio
if encoder_output_dim is None:
if model_config.expert_only:
encoder_output_dim = dg.expert_dim
else:
encoder_output_dim = dg.latent_dim
if model_config.neural_ode:
prior = None
roche = False
normalize = False
else:
prior = model.ExponentialPrior.log_density
roche = True
normalize = True
encoder = model.EncoderLSTM(
obs_dim + action_dim,
int(obs_dim * encoder_latent_ratio),
encoder_output_dim,
device=device,
normalize=normalize,
)
decoder = model.RocheExpertDecoder(
obs_dim,
encoder_output_dim,
action_dim,
t_max,
step_size,
roche=roche,
method=ode_method,
device=device,
ablate=ablate,
)
vi = model.VariationalInference(encoder, decoder, prior_log_pdf=prior, elbo=elbo)
best_model = torch.load(path + vi.model_name)
vi.encoder.load_state_dict(best_model["encoder_state_dict"])
vi.decoder.load_state_dict(best_model["decoder_state_dict"])
best_loss = best_model["best_loss"]
print("Overall best loss: {:.6f}".format(best_loss))
res = training_utils.evaluate_horizon(vi, dg, batch_size, eval_config.t0)
with open(result_path, "wb") as f:
pickle.dump(res, f)
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser("PKPD simulation")
parser.add_argument("--method", choices=["expert", "neural", "hybrid"], default="False", type=str)
parser.add_argument("--device", choices=["0", "1", "c"], default="1", type=str)
parser.add_argument("--seed", default=666, type=int)
parser.add_argument("--sample", default=1000, type=int)
parser.add_argument("--path", default=None, type=str)
parser.add_argument("--result_path", default=None, type=str)
parser.add_argument("--restart", default=3, type=int)
parser.add_argument("--arg_itr", default=None, type=int)
parser.add_argument("--eval", default="n", type=str)
parser.add_argument("--elbo", default="y", type=str)
parser.add_argument("--init", default=None, type=str)
parser.add_argument("--batch_size", default=50, type=int)
parser.add_argument("--t0", default=5, type=int)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--data_config", default=None, type=str)
parser.add_argument("--encoder_output_dim", default=None, type=int)
parser.add_argument("--data_path", default="data/datafile_dose_exp.pkl", type=str)
parser.add_argument("--ablate", default=False, type=bool)
args = parser.parse_args()
method = args.method
seed = args.seed
device = args.device
path = args.path
sample = args.sample
restart = args.restart
eval_only = args.eval == "y"
init_path = args.init
batch_size = args.batch_size
data_path = args.data_path
dc = args.data_config
elbo = args.elbo == "y"
encoder_output_dim = args.encoder_output_dim
arg_itr = args.arg_itr
assert eval_only
if dc == "dim8":
data_config = sim_config.dim8_config
elif dc == "dim12":
data_config = sim_config.dim12_config
else:
data_config = sim_config.DataConfig(n_sample=sample)
roche_config = sim_config.RochConfig()
if method == "expert":
model_config = sim_config.ModelConfig(expert_only=True, path=path)
elif method == "neural":
model_config = sim_config.ModelConfig(neural_ode=True, path=path)
elif method == "hybrid":
model_config = sim_config.ModelConfig(path=path)
optim_config = sim_config.OptimConfig(shuffle=False, n_restart=restart, batch_size=batch_size, lr=args.lr)
eval_config = sim_config.EvalConfig(t0=args.t0)
run(
seed,
elbo,
device,
eval_only,
init_path,
data_path,
sample,
data_config,
roche_config,
model_config,
optim_config,
eval_config,
encoder_output_dim,
args.ablate,
arg_itr,
args.result_path,
)