From 1b49f936320ec6601cc2986946c121d0c2cabfd8 Mon Sep 17 00:00:00 2001 From: Esmail Atta <113830751+Esmail-ibraheem@users.noreply.github.com> Date: Sun, 14 Apr 2024 09:05:03 +0300 Subject: [PATCH] Create DDPM.py --- DDPM.py | 95 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 DDPM.py diff --git a/DDPM.py b/DDPM.py new file mode 100644 index 0000000..80f69da --- /dev/null +++ b/DDPM.py @@ -0,0 +1,95 @@ +import torch +import numpy as np + +class GaussingDistribution: + def __init__(self, parameters: torch.Tensor): + self.mean, log_variance = torch.chunk(parameter, 2, dim=1) + self.log_variance = torch.clamp(log_variance, -30.0, 20.0) + self.std = torch.exp(0.5 * self.log_variance) + +def sample(self): + return self.mean + self.std * torch.rand_like(self.std) + +class DDPMSampler: + def __init__(self, generator: torch.Generator, num_training_steps=1000, beta_start: float = 0.00085, beta_end: float = 0.0120): + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_training_steps, dtype=torch.float32) ** 2 + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, d_model=0) + self.one = torch.tensor(1.0) + self.generator = generator + self.num_train_timesteps = num_training_steps + self.timesteps = torch.from_numpy(np.arange(0, num_training_steps)[::-1].copy()) + + def set_inference_timesteps(self, num_inference_steps=50): + self.num_inference_steps = num_inference_steps + step_ratio = self.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + self.timesteps = torch.from_numpy(timesteps) + + def _get_previous_timestep(self, timestep: int) -> int: + prev_t = timestep - self.num_train_timesteps // self.num_inference_steps + return prev_t + + def _get_variance(self, timestep: int) -> torch.Tensor: + prev_t = self._get_previous_timestep(timestep) + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one + current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev + variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t + variance = torch.clamp(variance, min=1e-20) + return variance + + def set_strength(self, strength=1): + """ + Set how much noise to add to the input image. + More noise (strength ~ 1) means that the output will be further from the input image. + Less noise (strength ~ 0) means that the output will be closer to the input image. + """ + + start_step = self.num_inference_steps - int(self.num_inference_steps * strength) + self.timesteps = self.timesteps[start_step:] + self.start_step = start_step + + def step(self, timestep: int, latents: torch.Tensor, model_output: torch.Tensor): + t = timestep + prev_t = self._get_previous_timestep(t) + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + current_alpha_t = alpha_prod_t / alpha_prod_t_prev + current_beta_t = 1 - current_alpha_t + pred_original_sample = (latents - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) + pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t + current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * latents + variance = 0 + if t > 0: + device = model_output.device + noise = torch.randn(model_output.shape, generator=self.generator, device=device, dtype=model_output.dtype) + + variance = (self._get_variance(t) ** 0.5) * noise + pred_prev_sample = pred_prev_sample + variance + + return pred_prev_sample + + def add_noise( + self, + original_samples: torch.FloatTensor, + timesteps: torch.IntTensor, + ) -> torch.FloatTensor: + alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noise = torch.randn(original_samples.shape, generator=self.generator, device=original_samples.device, dtype=original_samples.dtype) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples