-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_continuous_IGEV.py
376 lines (312 loc) · 18.1 KB
/
train_continuous_IGEV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from __future__ import print_function, division
import os
import argparse
import logging
import numpy as np
from pathlib import Path
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import torch
import torch.nn as nn
import torch.optim as optim
from models.coreContinuous_IGEV.continuous_IGEVstereo import continuous_IGEVStereo
from evaluation_validate import *
import models.coreContinuous_IGEV.stereo_datasets as datasets
import torch.nn.functional as F
from metrics_utils.experiment import save_scalars,tensor2float,adjust_learning_rate
try:
from torch.cuda.amp import GradScaler
except:
class GradScaler:
def __init__(self):
pass
def scale(self, loss):
return loss
def unscale_(self, optimizer):
pass
def step(self, optimizer):
optimizer.step()
def update(self):
pass
# [B,1,H,W]*n [B,1,H,W] [B,1,H,W]
def sequence_loss(disp_preds, disp_gt, valid, loss_gamma=0.9, max_disp=700):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(disp_preds)
assert n_predictions >= 1
disp_loss = 0.0
# mag = torch.sum(disp_gt**2, dim=1).sqrt().unsqueeze(1)
valid = (valid >= 0.5) & (disp_gt < max_disp)
assert valid.shape == disp_gt.shape, [valid.shape, disp_gt.shape]
assert not torch.isinf(disp_gt[valid.bool()]).any()
# The smooth is similar with others.
for i in range(n_predictions):
adjusted_loss_gamma = loss_gamma**(15/(n_predictions - 1))
i_weight = adjusted_loss_gamma**(n_predictions - i - 1)
i_loss = (disp_preds[i] - disp_gt).abs()
assert i_loss.shape == valid.shape, [i_loss.shape, valid.shape, disp_gt.shape, disp_preds[i].shape]
disp_loss += i_weight * i_loss[valid.bool()].mean()
epe = torch.sum((disp_preds[-1] - disp_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe > 1).float().mean().item(),
'3px': (epe > 3).float().mean().item()
}
return disp_loss, metrics
#[B,1,H*W] [B,1,H*W] [B,1,H*W]
def sequence_loss_multiscale(disp_preds, disp_gt, valid, loss_gamma=0.9, max_disp=700):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(disp_preds)
assert n_predictions >= 1
disp_loss = 0.0
valid = ((valid >= 0.5) & (disp_gt < max_disp))
assert valid.shape == disp_gt.shape, [valid.shape, disp_gt.shape]
assert not torch.isinf(disp_gt[valid.bool()]).any()
for i in range(n_predictions):
adjusted_loss_gamma = loss_gamma**(15/(n_predictions - 1))
i_weight = adjusted_loss_gamma**(n_predictions - i - 1)
i_loss = (disp_preds[i] - disp_gt).abs()
assert i_loss.shape == valid.shape, [i_loss.shape, valid.shape, disp_gt.shape, disp_preds[i].shape]
disp_loss += i_weight * i_loss[valid.bool()].mean()
epe = torch.sum((disp_preds[-1] - disp_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe > 1).float().mean().item(),
'3px': (epe > 3).float().mean().item()
}
return disp_loss, metrics
def sequence_loss_multiscale_superinit(init_disp_preds,low_dispgt,disp_preds, disp_gt, valid, loss_gamma=0.9, max_disp=700):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(disp_preds)
assert n_predictions >= 1
disp_loss = 0.0
valid = ((valid >= 0.5) & (disp_gt < max_disp))
valid_low=low_dispgt < (max_disp/4.0)
assert valid.shape == disp_gt.shape, [valid.shape, disp_gt.shape]
assert not torch.isinf(disp_gt[valid.bool()]).any()
disp_loss +=1.0* F.smooth_l1_loss(init_disp_preds[valid_low.bool()], low_dispgt[valid_low.bool()], size_average=True)
for i in range(n_predictions):
adjusted_loss_gamma = loss_gamma**(15/(n_predictions - 1))
i_weight = adjusted_loss_gamma**(n_predictions - i - 1)
i_loss = (disp_preds[i] - disp_gt).abs()
assert i_loss.shape == valid.shape, [i_loss.shape, valid.shape, disp_gt.shape, disp_preds[i].shape]
disp_loss += i_weight * i_loss[valid.bool()].mean()
epe = torch.sum((disp_preds[-1] - disp_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe > 1).float().mean().item(),
'3px': (epe > 3).float().mean().item()
}
return disp_loss, metrics
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
if args.lr_fixed:
scheduler=None
else:
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
pct_start=0.01, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
class Logger:
def __init__(self, model, scheduler):
self.model = model
self.scheduler = scheduler
self.total_steps = 0
self.running_loss = {}
self.writer = SummaryWriter(log_dir=os.path.join(args.savepath,'runs'))
self.sum_fre=args.sum_fre
def _print_training_status(self):
if not args.lr_fixed:
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0])
else:
training_str = "[{:6d}] ".format(self.total_steps+1)
metrics_str = " "
for k in sorted(self.running_loss.keys()):
metrics_str=metrics_str+"{}:{:.4f} ".format(k,self.running_loss[k]/self.sum_fre)
logging.info(f"Training Metrics ({self.total_steps}): {training_str + metrics_str}")
if self.writer is None:
self.writer = SummaryWriter(log_dir=os.path.join(args.savepath,'runs'))
for k in self.running_loss:
self.writer.add_scalar(k, self.running_loss[k]/self.sum_fre, self.total_steps)
self.running_loss[k] = 0.0
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss:
self.running_loss[key] = 0.0
self.running_loss[key] += metrics[key]
if self.total_steps % self.sum_fre == self.sum_fre-1:
self._print_training_status()
self.running_loss = {}
def write_dict(self, results,key="Test"):
if self.writer is None:
self.writer = SummaryWriter(log_dir=os.path.join(args.savepath,'runs'))
save_scalars(self.writer, key, tensor2float(results), self.total_steps)
def close(self):
self.writer.close()
def train(args):
model = nn.DataParallel(continuous_IGEVStereo(args))
print("Parameter Count: %d" % count_parameters(model))
train_loader = datasets.fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
total_steps = 0
logger = Logger(model, scheduler)
if args.restore_ckpt is not None:
assert args.restore_ckpt.endswith(".pth")
logging.info("Loading checkpoint...")
checkpoint = torch.load(args.restore_ckpt)
model_dict = model.state_dict()
pre_dict = {k: v for k, v in checkpoint.items() if k in model_dict}
model.load_state_dict(pre_dict, strict=True)
logging.info(f"Done loading checkpoint")
model.cuda()
model.train()
model.module.freeze_bn()
validation_frequency = args.valid_fre
scaler = GradScaler(enabled=args.mixed_precision)
should_keep_training = True
global_batch_num = 0
while should_keep_training:
for i_batch, (_, *data_blob) in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
if args.multi_training or args.multi_input_training:
image1, image2,hr_coord, hr_dispgt,arry_scale,low_dispgt = [x.cuda() for x in data_blob]
assert model.training
init_disp_preds,disp_preds = model(image1, image2, iters=args.train_iters,hr_coord=hr_coord,scale=arry_scale)
assert model.training
loss, metrics = sequence_loss_multiscale(disp_preds, hr_dispgt, (hr_dispgt < 512)&(hr_dispgt>0.),max_disp=args.max_disp)
if args.supervise_init:
loss, metrics = sequence_loss_multiscale_superinit(init_disp_preds,low_dispgt,disp_preds, hr_dispgt, (hr_dispgt < 512)&(hr_dispgt>0.),max_disp=args.max_disp)
else:
image1, image2, disp_gt = [x.cuda() for x in data_blob]
assert model.training
init_disp_preds,disp_preds = model(image1, image2, iters=args.train_iters)
assert model.training
loss, metrics = sequence_loss(disp_preds, disp_gt, (disp_gt < 512)&(disp_gt>0),max_disp=args.max_disp)
logger.writer.add_scalar("live_loss", loss.item(), global_batch_num)
logger.writer.add_scalar(f'learning_rate', optimizer.param_groups[0]['lr'], global_batch_num)
global_batch_num += 1
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
if not args.lr_fixed:
scheduler.step()
scaler.update()
logger.push(metrics)
if total_steps % validation_frequency == validation_frequency - 1:
save_path = Path(os.path.join(args.savepath,'%d_%s.pth'% (total_steps + 1, args.name)))
logging.info(f"Saving file {save_path.absolute()}")
torch.save(model.state_dict(), save_path)
if 'kitti' in args.train_datasets[0]:
results_all,results_occ,results_noc = validate_kitti(args,logger=None, model=model.module, iters=args.valid_iters, mode='kitti15')
results_noc=results_noc.mean()
print("Kitti15 {}".format(results_noc))
logger.write_dict(results_noc,key='kitti15')
results_all,results_occ,results_noc = validate_kitti(args,logger=None, model=model.module, iters=args.valid_iters, mode='kitti12')
results_noc=results_noc.mean()
logger.write_dict(results_noc,key='kitti12')
print("Kitti12 {}".format(results_noc))
model.train()
model.module.freeze_bn()
if 'middlebury' in args.train_datasets[0]:
results_all,results_occ,results_noc = validate_middlebury(args,logger=None, model=model.module, iters=args.valid_iters,split='Q_F')
results_noc=results_noc.mean()
print("middlebury {}".format(results_noc))
logger.write_dict(results_noc,key='middlebury_Q_F')
model.train()
model.module.freeze_bn()
total_steps += 1
if total_steps > args.num_steps:
should_keep_training = False
break
if len(train_loader) >= 10000:
save_path = Path(os.path.join(args.savepath,'%d_epoch_%s.pth.gz' % (total_steps + 1, args.name)))
logging.info(f"Saving file {save_path}")
torch.save(model.state_dict(), save_path)
print("FINISHED TRAINING")
logger.close()
PATH = os.path.join(args.savepath,'%s.pth' % args.name)
torch.save(model.state_dict(), PATH)
return PATH
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='prune-stereo', help="name your experiment")
parser.add_argument('--restore_ckpt', default=None, help="")
parser.add_argument('--mixed_precision', default=True, action='store_true', help='use mixed precision')
parser.add_argument('--savepath', default=None, help='save path')
# Training parameters
parser.add_argument('--batch_size', type=int, default=2, help="batch size used during training.")
parser.add_argument('--train_datasets', nargs='+', default=['sceneflow'], help="training datasets.")
parser.add_argument('--lr', type=float, default=0.0002, help="max learning rate.")
parser.add_argument('--lr_fixed', default=False, action='store_true', help='') #
parser.add_argument('--num_steps', type=int, default=100000, help="length of training schedule.")
parser.add_argument('--image_size', type=int, nargs='+', default=[320, 736], help="size of the random image crops used during training.")
parser.add_argument('--train_iters', type=int, default=16, help="number of updates to the disparity field in each forward pass.")
parser.add_argument('--wdecay', type=float, default=.00001, help="Weight decay in optimizer.")
parser.add_argument('--sum_fre', type=int, default=100, help='number of flow-field updates during validation forward pass')
# Validation parameters
parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during validation forward pass')
parser.add_argument('--valid_fre', type=int, default=10000, help='number of flow-field updates during validation forward pass')
parser.add_argument('--scale_test',type=int, default=1, help="the scale number for test, must lager than 1")
parser.add_argument('--max_disp', type=int, default=192, help="max disp of geometry encoding volume")
parser.add_argument('--max_enable', help='enable the max constraint', action='store_true', default=False)
parser.add_argument('--record', help='record on text', action='store_true', default=False)
parser.add_argument('--ShowImage', help='Show IMage', action='store_true', default=False)
parser.add_argument('--output', help='Ouput the image as colored png', action='store_true',default=False)
parser.add_argument('--model', type=str, default='continuous_IGEVStereo')
# Architecure choices
parser.add_argument('--corr_implementation', choices=["reg", "alt", "reg_cuda", "alt_cuda"], default="reg", help="correlation volume implementation")
parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders")
parser.add_argument('--corr_levels', type=int, default=2, help="number of levels in the correlation pyramid")
parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid")
parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)")
parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently")
parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels")
parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128]*3, help="hidden state and context dimensions")
parser.add_argument('--supervise_init', action='store_true', help="supervise the init disp before GRU")
#ISU
parser.add_argument('--unfold_Lac', default=None, help='')
parser.add_argument('--lsp_width', type=int, default=3)
parser.add_argument('--lsp_height', type=int, default=3)
parser.add_argument('--lsp_dilation', type=list, default=[1, 2, 4, 8])
#Implict upsampling
parser.add_argument('--local_ensemble', default=False, action='store_true', help='')
parser.add_argument('--decode_cell', default=False, action='store_true', help='')
parser.add_argument('--unfold', default=False, action='store_true', help='')
parser.add_argument('--Raw_Mask_dim', type=int, default=32, help="")
#pos encoding
parser.add_argument('--pos_enconding_new', default=False, action='store_true', help='')
parser.add_argument('--pos_enconding', default=False, action='store_true', help='')
parser.add_argument('--require_grad', default=True, action='store_true', help='')
parser.add_argument('--pos_dim', type=int, default=0, help="")
parser.add_argument('--mlphidden_list', type=int, nargs='+', default=[128,64,64], help="")
#Multi-Scale Training
parser.add_argument('--multi_training', default=False, action='store_true', help='')
parser.add_argument('--inp_size',type=int, nargs='+', default=[160,320], help="")
parser.add_argument('--scale_min',type=float, default=1, help="")
parser.add_argument('--scale_max',type=float, default=2.95, help="")
parser.add_argument('--without_mutli_scale', default=False, action='store_true', help='')
#Multi-Input Training
parser.add_argument('--multi_input_training', default=False, action='store_true', help='')
#Disparity Norm
parser.add_argument('--disparity_norm', default=False, action='store_true', help='')
parser.add_argument('--disparity_norm2', default=False, action='store_true', help='')
parser.add_argument('--multi_evaothers', default=False, action='store_true', help='')
#Quarter Nearest
parser.add_argument('--quater_nearest', default=None, help='') #only_disp both
#CFA
parser.add_argument('--agg_type', default='type5', help='')
# Data augmentation
parser.add_argument('--img_gamma', type=float, nargs='+', default=None, help="gamma range")
parser.add_argument('--saturation_range', type=float, nargs='+', default=[0, 1.4], help='color saturation')
parser.add_argument('--do_flip', default=False, choices=['h', 'v'], help='flip the images horizontally or vertically')
parser.add_argument('--spatial_scale', type=float, nargs='+', default=[-0.2, 0.4], help='re-scale the images randomly')
parser.add_argument('--noyjitter', action='store_true', help='don\'t simulate imperfect rectification')
args = parser.parse_args()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s')
Path(args.savepath).mkdir(exist_ok=True, parents=True)
train(args)