-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_RFB.py
216 lines (182 loc) · 7.2 KB
/
test_RFB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import print_function
import sys
import os
import pickle
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import numpy as np
from torch.autograd import Variable
from data import VOCroot
from data import AnnotationTransform, VOCDetection, BaseTransform, VOC_300
import torch.utils.data as data
from layers.functions import Detect,PriorBox
from utils.nms_wrapper import nms
from utils.timer import Timer
from utils.visualize import print_info
from tqdm import tqdm
# 140: 74.93
# 125: 74.57
parser = argparse.ArgumentParser(description='Receptive Field Block Net')
parser.add_argument('-v', '--version', default='RFB_vgg',
help='RFB_vgg ,RFB_E_vgg or RFB_mobile version.')
parser.add_argument('-s', '--size', default='300',
help='300 or 512 input size.')
parser.add_argument('-d', '--dataset', default='VOC',
help='VOC or COCO version')
# parser.add_argument('-m', '--trained_model', default='weights/RFB_vgg_VOC_epoches_150.pth',
# type=str, help='Trained state_dict file path to open')
parser.add_argument('-m', '--trained_model', default='weights/7690.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--save_folder', default='eval/', type=str,
help='Dir to save results')
parser.add_argument('--cuda', default=True, type=bool,
help='Use cuda to train model')
parser.add_argument('--cpu', default=False, type=bool,
help='Use cpu nms')
parser.add_argument('--retest', default=False, type=bool,
help='test cache results')
args = parser.parse_args()
print_info('----------------------------------------------------------------------\n'
'| RFBDet Evaluation Program |\n'
'----------------------------------------------------------------------', ['yellow','bold'])
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
cfg = VOC_300
if args.version == 'RFB_vgg':
from models.RFB_Net_vgg import build_net
elif args.version == 'RFB_E_vgg':
from models.RFB_Net_E_vgg import build_net
priorbox = PriorBox(cfg)
with torch.no_grad():
priors = priorbox.forward()
if args.cuda:
priors = priors.cuda()
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.005):
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# dump predictions and assoc. ground truth to text file for now
num_images = len(testset)
print_info('=> Total {} images to test.'.format(num_images), ['yellow', 'bold'])
num_classes = 2
all_boxes = [[[] for _ in range(num_images)]
for _ in range(num_classes)]
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(save_folder, 'detections.pkl')
print_info('Begin to evaluate', ['yellow', 'bold'])
for i in tqdm(range(num_images)):
img = testset.pull_image(i)
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]])
with torch.no_grad():
x = transform(img).unsqueeze(0)
if cuda:
x = x.cuda()
scale = scale.cuda()
_t['im_detect'].tic()
out = net(x) # forward pass
boxes, scores = detector.forward(out,priors)
detect_time = _t['im_detect'].toc()
boxes = boxes[0]
scores=scores[0]
boxes *= scale
boxes = boxes.cpu().numpy()
scores = scores.cpu().numpy()
# scale each detection back up to the image
_t['misc'].tic()
for j in range(1, num_classes):
inds = np.where(scores[:, j] > thresh)[0]
if len(inds) == 0:
all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(
np.float32, copy=False)
keep = nms(c_dets, 0.45, force_cpu=args.cpu)
c_dets = c_dets[keep, :]
all_boxes[j][i] = c_dets
if max_per_image > 0:
image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1,num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
nms_time = _t['misc'].toc()
if i % 20 == 0:
print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s'
.format(i + 1, num_images, detect_time, nms_time))
_t['im_detect'].clear()
_t['misc'].clear()
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
testset.evaluate_detections(all_boxes, save_folder)
if __name__ == '__main__':
# load net
img_dim = 300
num_classes = 2
net = build_net('test', num_classes) # initialize detector
if args.cpu:
state_dict=torch.load(args.trained_model, map_location='cpu')
else:
state_dict = torch.load(args.trained_model)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
net.eval()
print('Finished loading model!')
print(args.trained_model.split('/')[-1])
#print(net)
# load data
testset = VOCDetection(
VOCroot, [('2007', 'test')], None, AnnotationTransform())
if args.cuda:
net = net.cuda()
cudnn.benchmark = True
else:
net = net.cpu()
# evaluation
#top_k = (300, 200)[args.dataset == 'COCO']
top_k = 200
detector = Detect(num_classes,0,cfg)
save_folder = os.path.join(args.save_folder,args.dataset)
rgb_means = (104, 117, 123)
test_net(save_folder, net, detector, args.cuda, testset,
BaseTransform(img_dim, rgb_means, (2, 0, 1)),
top_k, thresh=0.01)