-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathls_preprocess.py
61 lines (57 loc) · 2.58 KB
/
ls_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from speechtokenizer import SpeechTokenizer
from tqdm import tqdm
import os
import numpy as np
import torchaudio
from pathlib import Path
from einops import rearrange
if __name__ == '__main__':
extract_token = True
src_root = '/path/LibriSpeech/'
train_split = ['train-clean-360', 'train-clean-100', 'train-other-500']
exts = ['flac']
train_file_list = []
for split in train_split:
path = Path(f'{src_root}/{split}')
train_file_list += [str(file) for ext in exts for file in path.glob(f'**/*.{ext}')]
with open('./train_file_list_wav.txt', 'w+') as f:
f.write('\n'.join(train_file_list))
valid_split = ['dev-clean']
valid_file_list = []
for split in valid_split:
path = Path(f'{src_root}/{split}')
valid_file_list += [str(file) for ext in exts for file in path.glob(f'**/*.{ext}')]
with open('./valid_file_list_wav.txt', 'w+') as f:
f.write('\n'.join(valid_file_list))
file_list = train_file_list + valid_file_list
if extract_token:
target_root = '/path/spt_tokens/'
tokens_file_dict = {'train':[],
'valid': []}
st_cfg = '/remote-home/xzhang/Speech/SpeechTokenizer/ckpt/config.json'
st_ckpt = '/remote-home/xzhang/Speech/SpeechTokenizer/ckpt/SpeechTokenizer.pt'
tokenizer = SpeechTokenizer.load_from_checkpoint(st_cfg, st_ckpt).cuda()
for file in tqdm(file_list):
split, spk, chapter, filename = file.split('/')[-4:]
target_dir = f'{target_root}/{split}/{chapter}'
if not os.path.exists(target_dir):
os.makedirs(target_dir)
wav, sr = torchaudio.load(file)
if wav.size(0) > 1:
wav = wav.mean(axis=0)
wav = wav.unsqueeze(0)
if sr != tokenizer.sample_rate:
wav = torchaudio.functional.resample(wav, sr, tokenizer.sample_rate)
wav = wav.cuda()
tokens = tokenizer.encode(wav.unsqueeze(0))
tokens = rearrange(tokens, 'q b n -> b n q')
target_file = f"{target_dir}/{filename.split('.')[0]}.spt"
np.save(target_file, tokens.squeeze(0).cpu().detach().numpy())
target_file = target_file + '.npy'
if split in train_split:
tokens_file_dict['train'].append(target_file)
else:
tokens_file_dict['valid'].append(target_file)
for split, filelist in tokens_file_dict.items():
with open(f'./{split}_file_list_tokens.txt', 'w+') as f:
f.write('\n'.join(filelist))