-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_mutual.py
434 lines (359 loc) · 17.9 KB
/
train_mutual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from __future__ import print_function
import os
import copy
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import argparse
from torch.utils.data import DataLoader
from data.dataset_s2 import DFC2020
from models.resnet import ResNet18, Net6
import utils.metrics as metrics
from utils.estimators import HardNegtive_loss, tuba_lower_bound, smile_lower_bound, infonce_lower_bound, dv_upper_lower_bound
# data augmentation
from kornia import geometry as geo
from kornia import filters
from skimage import filters
from utils.util import adjust_learning_rate, AverageMeter, rosin, GaussianBlur, default, RandomApply
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# load the original big image (if just one, it should be big enough)
parser.add_argument('--batch_size', type=int, default=10, help='batch_size for data training')
parser.add_argument('--crop_size', type=int, default=200, help='crop_size for ensuring same patch_size within all batches')
parser.add_argument('--num_workers', type=int, default=0, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=200, help='number of training epochs')
# split image into small patches
parser.add_argument('--patch_size', type=int, default=8, help='patch_size for training')
parser.add_argument('--unfold_stride', type=int, default=4, help='stride during the training patches')
parser.add_argument('--val_patch_size', type=int, default=8, help='patch_size for inference')
parser.add_argument('--val_unfold_stride', type=int, default=2, help='stride during the inference patches')
parser.add_argument('--pbatch_size', type=int, default=10000, help='batch_size of patches during inference')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.03, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# resume and test
parser.add_argument('--resume', default=False, type=bool, help='flag for training from checkpoint')
parser.add_argument('--test', default=False, type=bool, help='flag for testing on test data set')
# model definition
parser.add_argument('--model', type=str, default='resnet18', choices=['resnet18', 'resnet34'])
parser.add_argument('--feat_dim', type=int, default=64, help='dim of feat for inner product')
# input/output for data use
parser.add_argument('--use_s2hr', action='store_true', default=True, help='use sentinel-2 high-resolution (10 m) bands')
parser.add_argument('--use_s2mr', action='store_true', default=False, help='use sentinel-2 medium-resolution (20 m) bands')
parser.add_argument('--use_s2lr', action='store_true', default=False, help='use sentinel-2 low-resolution (60 m) bands')
parser.add_argument('--use_s1', action='store_true', default=True, help='use sentinel-1 data')
parser.add_argument('--no_savanna', action='store_true', default=False, help='ignore class savanna')
# specify folder
parser.add_argument('--data_dir_train', type=str, default='./InferS2-all', help='path to training data set')
parser.add_argument('--data_dir_eval', type=str, default='./InferS2', help='path to test data set')
parser.add_argument('--save_path', type=str, default='./save_MIE', help='path to save model')
parser.add_argument('--eval_freq', type=int, default=50, help='print frequency')
parser.add_argument('--save_freq', type=int, default=100, help='save frequency')
opt = parser.parse_args()
if (opt.data_dir_train is None):
raise ValueError('one or more of the folders is None: data_folder')
opt.model_name = opt.model
opt.model_name = 'calibrated_{}_bsz_{}_lr_{}_decay_{}'.format(opt.model_name, opt.batch_size, opt.learning_rate,
opt.weight_decay)
opt.save_path = os.path.join(opt.save_path, opt.model_name)
if not os.path.isdir(opt.save_path):
os.makedirs(opt.save_path)
if not os.path.isdir(opt.data_dir_train):
raise ValueError('data path not exist: {}'.format(opt.data_dir_train))
return opt
def change_map(difference_img):
#difference_img = difference_img.cpu().detach().numpy()
#threshold = filters.threshold_otsu(difference_img)
#rosin methods
difference_img = (difference_img - difference_img.mean()) / difference_img.std()
#threshold = rosin(difference_img)
threshold = difference_img.min().abs()
return difference_img >= threshold
def get_train_val_loader(args):
data_set = DFC2020(args.data_dir_train,
subset="train",
no_savanna=args.no_savanna,
use_s2hr=args.use_s2hr,
use_s2mr=args.use_s2mr,
use_s2lr=args.use_s2lr,
use_s1=args.use_s1,
unlabeled=True,
transform=True,
train_index=None,
crop_size=args.crop_size)
n_classes = data_set.n_classes
n_inputs = data_set.n_inputs
eval_set = DFC2020(args.data_dir_eval,
subset="train",
no_savanna=args.no_savanna,
use_s2hr=args.use_s2hr,
use_s2mr=args.use_s2mr,
use_s2lr=args.use_s2lr,
use_s1=args.use_s1,
unlabeled=False,
transform=False,
train_index=None,
crop_size=args.crop_size)
# set up dataloaders
train_loader = DataLoader(data_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True)
eval_loader = DataLoader(eval_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False)
return train_loader, eval_loader, n_inputs, n_classes
class Trainer:
def __init__(self, args, online_network, target_network, optimizer, device):
#DEFAULT_AUG = nn.Sequential(
# RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.5),
# RandomApply(geo.transform.Hflip(), p=0.5),
# RandomApply(geo.transform.Vflip(), p=0.5))
#augment_fn = None
#self.augment = default(augment_fn, DEFAULT_AUG)
self.online_network = online_network
self.target_network = target_network
self.optimizer = optimizer
self.device = device
self.savepath = args.save_path
self.max_epochs = args.epochs
self.m = 0.996
self.n_classes = args.n_classes
self.patch_size = args.patch_size
self.pbatch_size = args.pbatch_size
self.train_pbatch_size = int(args.pbatch_size * 0.5)
self.unfold_stride = args.unfold_stride
self.val_patch_size = args.val_patch_size
self.val_unfold_stride = args.val_unfold_stride
self.eval_freq = args.eval_freq
self.save_freq = args.save_freq
@torch.no_grad()
def _update_target_network_parameters(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.online_network.parameters(), self.target_network.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
def initializes_target_network(self):
# init momentum network as encoder net
for param_q, param_k in zip(self.online_network.parameters(), self.target_network.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
def train(self, train_loader, eval_loader):
niter = 0
for epoch_counter in range(self.max_epochs):
train_loss = 0.0
for idx, (batch, _) in enumerate(train_loader):
image = batch['image']
# split whole image to patches
patches = self.patchize(image, self.patch_size, self.unfold_stride)
P, C, pH, pW = patches.shape
# random shuffle index
shuffle_ids = torch.randperm(P).cuda()
# shuffle for training
this_patches = patches[shuffle_ids]
# training in each pbatch_size
quotient, remainder = divmod(P, self.train_pbatch_size)
pbatch = quotient if quotient > 0 else remainder
for i in range(pbatch):
start = i * self.train_pbatch_size
end = start + self.train_pbatch_size
patch = this_patches[start:end, :, :, :]
# read file
loss = self.update(patch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
niter += 1
train_loss += loss.item()
train_loss = train_loss / self.pbatch_size
print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch_counter, train_loss))
torch.cuda.empty_cache()
if (epoch_counter + 1) % self.eval_freq == 0:
self.validate(eval_loader)
self.online_network.train()
# save checkpoints
if (epoch_counter + 1) % self.save_freq == 0:
self.save_model(os.path.join(self.savepath,
'MIE_epoch_{epoch}_{loss}.pth'.format(epoch=epoch_counter, loss=train_loss)))
def update(self, image):
# split pre and post
batch_view_1, batch_view_2 = torch.split(image, [4, 4], dim=1)
# if you want to train your network on single image
#image1, _ = torch.split(image, [4, 4], dim=1)
#batch_view_1, batch_view_2 = self.augment(image1), self.augment(image1)
batch_view_1 = batch_view_1.to(self.device)
batch_view_2 = batch_view_2.to(self.device)
# compute query feature
o_feature1 = self.online_network(batch_view_1)
o_feature2 = self.online_network(batch_view_2)
# compute key features
#with torch.no_grad():
# t_feature2 = self.target_network(batch_view_1)
# t_feature1 = self.target_network(batch_view_2)
# loss function options (normal contrastive loss)
l_feature1 = F.normalize(o_feature1, dim=1)
l_feature2 = F.normalize(o_feature2, dim=1)
scores = torch.matmul(l_feature1, l_feature2.t())
mi_estimation = smile_lower_bound(scores)
loss = - mi_estimation
# hard negative loss (it seems that using mean teacher in small data set leads to performance drops)
#loss = HardNegtive_loss(o_feature1, t_feature1, batch_size=self.train_pbatch_size) + \
# HardNegtive_loss(o_feature2, t_feature2, batch_size=self.train_pbatch_size)
#loss = HardNegtive_loss(o_feature1, o_feature2, batch_size=self.train_pbatch_size)
return loss
def validate(self, val_loader):
# switch to evaluate mode
self.online_network.eval()
# main validation loop
conf_mat = metrics.ConfMatrix(self.n_classes, 100)
with torch.no_grad():
for idx, (batch, _) in enumerate(val_loader):
start = time.time()
# unpack sample
image, target = batch['image'], batch['label']
# ===================forward=====================
prediction = self.compute_heatmap(image, self.val_patch_size, self.val_unfold_stride)
print('time elapsed:', time.time() - start)
cd_map = change_map(prediction)
plt.imsave('MIEI.png', prediction.squeeze().cpu().detach().numpy(), cmap='gray')
plt.imsave('MIE.png', np.squeeze(cd_map), cmap='gray')
# calculate error metrics
conf_mat.add_batch(target.cpu().numpy(), np.expand_dims(cd_map, axis=0))
print("[Val] AA: {:.2f}%".format(conf_mat.get_aa() * 100))
def patchize(self, img: torch.Tensor, patch_size, unfold_stride) -> torch.Tensor:
"""
img.shape
B : batch size
C : channels of image (same to patches.shape[1])
iH : height of image
iW : width of image
pH : height of patch
pW : width of patch
V : values in a patch (pH * pW * C)
"""
B, C, iH, iW = img.shape
pH = patch_size
pW = patch_size
unfold = nn.Unfold(kernel_size=(pH, pW), stride=unfold_stride)
patches = unfold(img) # (B, V, P)
patches = patches.permute(0, 2, 1).contiguous() # (B, P, V)
patches = patches.view(-1, C, pH, pW) # (P, C, pH, pW)
return patches
def compute_squared_l2_distance(self, pred: torch.Tensor, surrogate_label: torch.Tensor) -> torch.Tensor:
losses = (pred - surrogate_label) ** 2
losses = losses.view(losses.shape[0], -1)
losses = torch.mean(losses, dim=1)
losses = losses.cpu().detach()
return losses
def compute_heatmap(self, img: torch.Tensor, patch_size, unfold_stride):
"""
img.shape -> (B, C, iH, iW)
B : batch size
C : channels of image (same to patches.shape[1])
iH : height of image
iW : width of image
patches.shape -> (P, C, pH, pW)
P : patch size
C : channels of image (same to img.shape[1])
pH : height of patch
pW : width of patch
"""
patches = self.patchize(img, patch_size, unfold_stride)
B, C, iH, iW = img.shape
P, C, pH, pW = patches.shape
heatmap = torch.zeros(P)
quotient, remainder = divmod(P, self.pbatch_size)
for i in range(quotient):
start = i * self.pbatch_size
end = start + self.pbatch_size
patch = patches[start:end, :, :, :]
patch = patch.to(self.device)
# same network
patch1, patch2 = torch.split(patch, [4, 4], dim=1)
surrogate_label = self.online_network(patch1)
pred = self.online_network(patch2)
#
losses = self.compute_squared_l2_distance(pred, surrogate_label)
heatmap[start:end] = losses
if remainder != 0:
patch = patches[-remainder:, :, :, :]
patch = patch.to(self.device)
patch1, patch2 = torch.split(patch, [4, 4], dim=1)
surrogate_label = self.online_network(patch1)
pred = self.online_network(patch2)
#
losses = self.compute_squared_l2_distance(pred, surrogate_label)
heatmap[-remainder:] = losses
fold = nn.Fold(
output_size=(iH, iW),
kernel_size=(pH, pW),
stride=unfold_stride,
)
heatmap = heatmap.expand(B, pH * pW, P)
heatmap = fold(heatmap)
heatmap = heatmap.squeeze()
del patches
return heatmap
def save_model(self, PATH):
print('==> Saving...')
state ={
'online_network_state_dict': self.online_network.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
}
torch.save(state, PATH)
# help release GPU memory
del state
def main():
# parse the args
args = parse_option()
# set flags for GPU processing if available
if torch.cuda.is_available():
args.use_gpu = True
device = 'cuda'
else:
args.use_gpu = False
device = 'cpu'
# set the data loader
train_loader, eval_loader, n_inputs, n_classes = get_train_val_loader(args)
args.n_inputs = n_inputs
args.n_classes = 2
# set the model
# online_network = ResNet18(num_feats=args.feat_dim, width=1, in_channel=4).to(device)
online_network = Net6(num_feats=args.feat_dim, width=1, in_channel=4).to(device)
# --> target model
target_network = copy.deepcopy(online_network)
target_network = target_network.to(device)
if args.resume:
try:
print('loading pretrained models')
checkpoints_folder = os.path.join('.', 'pre_train')
# load pre-trained parameters
load_params = torch.load(os.path.join(os.path.join(checkpoints_folder, 'MIE' + str(args.crop_size) + '.pth')),
map_location=device)
online_network.load_state_dict(load_params['online_network_state_dict'])
if args.test:
trainer = Trainer(args, online_network=online_network, target_network=None, optimizer=None, device=device)
trainer.validate(train_loader)
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
# target encoder
optimizer = torch.optim.SGD(online_network.parameters(), lr=0.03, momentum=0.9, weight_decay=0.0004)
trainer = Trainer(args,
online_network=online_network,
target_network=target_network,
optimizer=optimizer,
device=device)
trainer.train(train_loader, eval_loader)
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
main()