-
Notifications
You must be signed in to change notification settings - Fork 4
/
util.py
377 lines (312 loc) · 12.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import pickle
import numpy as np
import os
import scipy.sparse as sp
import torch
from torch.autograd import Variable
from sklearn.metrics import mean_squared_error, mean_absolute_error
def normal_std(x):
return x.std() * np.sqrt((len(x) - 1.) / (len(x)))
def str_to_bool(value):
if isinstance(value, bool):
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise ValueError(f'{value} is not a valid boolean value')
class DataLoaderS(object):
def __init__(self,
file_name,
train,
valid,
device,
horizon,
window,
normalize=2):
self.P = window
self.h = horizon
fin = open(file_name)
self.rawdat = np.loadtxt(fin, delimiter=',')
self.dat = np.zeros(self.rawdat.shape)
self.n, self.m = self.dat.shape
self.normalize = 2
self.scale = np.ones(self.m)
self._normalized(normalize)
self._split(int(train * self.n), int((train + valid) * self.n), self.n)
self.scale = torch.from_numpy(self.scale).float()
tmp = self.test[1] * self.scale.expand(self.test[1].size(0), self.m)
self.scale = self.scale.to(device)
self.scale = Variable(self.scale)
self.rse = normal_std(tmp)
self.rae = torch.mean(torch.abs(tmp - torch.mean(tmp)))
self.device = device
def _normalized(self, normalize):
if (normalize == 0):
self.dat = self.rawdat
if (normalize == 1):
self.dat = self.rawdat / np.max(self.rawdat)
if (normalize == 2):
for i in range(self.m):
self.scale[i] = np.max(np.abs(self.rawdat[:, i]))
self.dat[:, i] = self.rawdat[:, i] / np.max(
np.abs(self.rawdat[:, i]))
def _split(self, train, valid, test):
train_set = range(self.P + self.h - 1, train)
valid_set = range(train, valid)
test_set = range(valid, self.n)
self.train = self._batchify(train_set, self.h)
self.valid = self._batchify(valid_set, self.h)
self.test = self._batchify(test_set, self.h)
def _batchify(self, idx_set, horizon):
n = len(idx_set)
X = torch.zeros((n, self.P, self.m))
Y = torch.zeros((n, self.m))
for i in range(n):
end = idx_set[i] - self.h + 1
start = end - self.P
X[i, :, :] = torch.from_numpy(self.dat[start:end, :])
Y[i, :] = torch.from_numpy(self.dat[idx_set[i], :])
return [X, Y]
def get_batches(self, inputs, targets, batch_size, shuffle=True):
length = len(inputs)
if shuffle:
index = torch.randperm(length)
else:
index = torch.LongTensor(range(length))
start_idx = 0
while (start_idx < length):
end_idx = min(length, start_idx + batch_size)
excerpt = index[start_idx:end_idx]
X = inputs[excerpt]
Y = targets[excerpt]
X = X.to(self.device)
Y = Y.to(self.device)
yield Variable(X), Variable(Y)
start_idx += batch_size
class DataLoaderM(object):
def __init__(self, xs, ys, batch_size, pad_with_last_sample=True):
self.batch_size = batch_size
self.current_ind = 0
if pad_with_last_sample:
num_padding = (batch_size - (len(xs) % batch_size)) % batch_size
x_padding = np.repeat(xs[-1:], num_padding, axis=0)
y_padding = np.repeat(ys[-1:], num_padding, axis=0)
xs = np.concatenate([xs, x_padding], axis=0)
ys = np.concatenate([ys, y_padding], axis=0)
self.size = len(xs)
self.num_batch = int(self.size // self.batch_size)
self.xs = xs
self.ys = ys
def shuffle(self):
permutation = np.random.permutation(self.size)
xs, ys = self.xs[permutation], self.ys[permutation]
self.xs = xs
self.ys = ys
def get_iterator(self):
self.current_ind = 0
def _wrapper():
while self.current_ind < self.num_batch:
start_ind = self.batch_size * self.current_ind
end_ind = min(self.size,
self.batch_size * (self.current_ind + 1))
x_i = self.xs[start_ind:end_ind, ...]
y_i = self.ys[start_ind:end_ind, ...]
yield (x_i, y_i)
self.current_ind += 1
return _wrapper()
class DataLoaderM_new(object):
def __init__(self, xs, ys, ycl, batch_size, pad_with_last_sample=True):
self.batch_size = batch_size
self.current_ind = 0
if pad_with_last_sample:
num_padding = (batch_size - (len(xs) % batch_size)) % batch_size
x_padding = np.repeat(xs[-1:], num_padding, axis=0)
y_padding = np.repeat(ys[-1:], num_padding, axis=0)
xs = np.concatenate([xs, x_padding], axis=0)
ys = np.concatenate([ys, y_padding], axis=0)
ycl = np.concatenate([ycl, y_padding], axis=0)
self.size = len(xs)
self.num_batch = int(self.size // self.batch_size)
self.xs = xs
self.ys = ys
self.ycl = ycl
def shuffle(self):
permutation = np.random.permutation(self.size)
xs, ys, ycl = self.xs[permutation], self.ys[permutation], self.ycl[
permutation]
self.xs = xs
self.ys = ys
self.ycl = ycl
def get_iterator(self):
self.current_ind = 0
def _wrapper():
while self.current_ind < self.num_batch:
start_ind = self.batch_size * self.current_ind
end_ind = min(self.size,
self.batch_size * (self.current_ind + 1))
x_i = self.xs[start_ind:end_ind, ...]
y_i = self.ys[start_ind:end_ind, ...]
y_i_cl = self.ycl[start_ind:end_ind, ...]
yield (x_i, y_i, y_i_cl)
self.current_ind += 1
return _wrapper()
class StandardScaler:
def __init__(self, mean, std):
self.mean = mean
self.std = std
def transform(self, data):
return (data - self.mean) / self.std
def inverse_transform(self, data):
return (data * self.std) + self.mean
def sym_adj(adj):
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).astype(
np.float32).todense()
def asym_adj(adj):
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1)).flatten()
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
return d_mat.dot(adj).astype(np.float32).todense()
def load_pickle(pickle_file):
try:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f)
except UnicodeDecodeError as e:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f, encoding='latin1')
except Exception as e:
print('Unable to load data ', pickle_file, ':', e)
raise
return pickle_data
def load_adj(args, pkl_filename):
if args.dataset in ['PEMS03', 'PEMS04', 'PEMS07', 'PEMS08']:
dis_mat, = load_pickle(pkl_filename)
dis_mat = (dis_mat > 0).astype(np.float)
return [asym_adj(dis_mat), asym_adj(np.transpose(dis_mat))], dis_mat
sensor_ids, sensor_id_to_ind, adj_mx = load_pickle(pkl_filename)
return [asym_adj(adj_mx), asym_adj(np.transpose(adj_mx))], adj_mx
def load_sym_adj(args, pkl_filename):
if args.dataset in ['PEMS03', 'PEMS04', 'PEMS07', 'PEMS08']:
dis_mat, = load_pickle(pkl_filename)
dis_mat = (dis_mat > 0).astype(np.float)
return sym_adj(dis_mat), dis_mat
sensor_ids, sensor_id_to_ind, adj_mx = load_pickle(pkl_filename)
return sym_adj(adj_mx), adj_mx
def load_dataset(args, dataset_dir,
batch_size,
valid_batch_size=None,
test_batch_size=None):
data = {}
for category in ['train', 'val', 'test']:
cat_data = np.load(os.path.join(dataset_dir, category + '.npz'))
data['x_' + category] = cat_data['x']
data['y_' + category] = cat_data['y']
if args.feat_off == 1:
scaler = StandardScaler(mean=data['x_train'][..., 0].mean(),
std=data['x_train'][..., 0].std())
else:
scaler = []
for i in range(args.feat_off):
scaler.append(StandardScaler(mean=data['x_train'][..., i].mean(),
std=data['x_train'][..., i].std()))
for category in ['train', 'val', 'test']:
if args.feat_off == 1:
data['x_' + category][..., 0] = scaler.transform(data['x_' + category][..., 0])
else:
for i in range(args.feat_off):
data['x_' + category][..., i] = scaler[i].transform(data['x_' + category][..., i])
import copy
data['y_train_cl'] = copy.deepcopy(data['y_train'])
if args.feat_off == 1:
data['y_train_cl'][..., 0] = scaler.transform(data['y_train'][..., 0])
else:
for i in range(args.feat_off):
data['y_train_cl'][..., i] = scaler[i].transform(data['y_train'][..., i])
data['train_loader'] = DataLoaderM_new(data['x_train'], data['y_train'],
data['y_train_cl'], batch_size)
data['val_loader'] = DataLoaderM(data['x_val'], data['y_val'],
valid_batch_size)
data['test_loader'] = DataLoaderM(data['x_test'], data['y_test'],
test_batch_size)
data['scaler'] = scaler
return data
def masked_mse(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = (preds - labels) ** 2
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def masked_rmse(preds, labels, null_val=np.nan):
return torch.sqrt(masked_mse(preds=preds, labels=labels,
null_val=null_val))
def masked_mae(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = torch.abs(preds - labels)
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def masked_mape(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = torch.abs(preds - labels) / labels
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss) * 100
def masked_mape_np(y_true, y_pred, null_val=np.nan):
with np.errstate(divide='ignore', invalid='ignore'):
if np.isnan(null_val):
mask = ~np.isnan(y_true)
else:
mask = np.not_equal(y_true, null_val)
mask = mask.astype('float32')
mask /= np.mean(mask)
mape = np.abs(np.divide(np.subtract(y_pred, y_true).astype('float32'),
y_true))
mape = np.nan_to_num(mask * mape)
return np.mean(mape) * 100
def metric(pred, real):
mae = mean_absolute_error(pred.cpu().flatten(), real.cpu().flatten()).item()
mape = masked_mape_np(pred.cpu().numpy(), real.cpu().numpy(), 0).item()
rmse = mean_squared_error(pred.cpu().flatten(), real.cpu().flatten()).item() ** 0.5
return mae, rmse, mape
def load_node_feature(path):
fi = open(path)
x = []
for li in fi:
li = li.strip()
li = li.split(",")
e = [float(t) for t in li[1:]]
x.append(e)
x = np.array(x)
mean = np.mean(x, axis=0)
std = np.std(x, axis=0)
z = torch.tensor((x - mean) / std, dtype=torch.float)
return z
def norm_adj(adj):
norm = (adj.sum(dim=-1, keepdims=True) ** (-0.5)) * (adj.sum(dim=-2, keepdims=True) ** (-0.5)) + 1e-5
normalized_adj = adj / norm
return normalized_adj