-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
75 lines (69 loc) · 2.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
2018/10/11
MMD AAE Reappear On VLCS Datasets.
All settings following the original feature.
"""
import numpy as np
from utils.models import MMD_AAE
from utils.datasets import VLSC
from utils.logging import printRed
from sklearn.metrics import accuracy_score
from keras.losses import sparse_categorical_crossentropy
import os
import gc
from keras import backend as K
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
patience = 10
repeat_times = 20
best_accs = np.zeros([repeat_times, 4])
for i in range(repeat_times):
datasets = VLSC('data/VLSC', test_split=0.3)
source_name = datasets.source_name
best_acc = np.zeros([4])
for idxSource, name in enumerate(source_name):
print('Testing on {}, training on remain...'.format(name))
datasets.set_mean_std(name)
generator = datasets.generator(name, batch_size=100)
val_data, val_y, val_domain = datasets.getValData(name)
test_data, test_y = datasets.getTestData(name)
mmd_aae = MMD_AAE(3, 4096, 5, ae=0.1, mmd=2, adv=0.1, cls=1,
taskLoss=sparse_categorical_crossentropy)
model, advModel = mmd_aae.makeModel()
metrics_name = model.metrics_names
advGenerator = datasets.adversarialGenerator(name, model, batch_size=100)
tol_step = 0
count = 0
while True:
batch_x, batch_y = next(advGenerator)
adv_loss, adv_acc = advModel.train_on_batch(batch_x, batch_y)
print('[Step {} Adv] loss: {:.4}, acc: {:.4}'.format(tol_step, adv_loss, adv_acc))
model.fit_generator(generator, steps_per_epoch=1, epochs=1)
tol_step += 1
results = model.evaluate(val_data, [val_data, val_domain,
np.ones((val_y.shape[0], 1)),
val_y], batch_size=300)
printRed('[Step {}]'.format(tol_step), end=' ')
for idx, mname in enumerate(metrics_name):
# if 'decoder' in mname or 'task' in mname:
printRed('{}: {:.4}'.format(mname, results[idx]), end=', ')
print()
_, _, _, test_pred = model.predict(test_data)
label = np.argmax(test_pred, axis=1)
# print(label.shape, np.unique(label))
acc = accuracy_score(test_y, label)
printRed('[TEST] ACC: {:.4}'.format(acc*100))
if acc > best_acc[idxSource]:
best_acc[idxSource] = acc
count = 0
else:
count += 1
if count >= patience:
break
print(source_name)
print(best_acc)
best_accs[i, :] = best_acc
np.savez('results.npz', accs=best_accs, name=source_name)
del mmd_aae
gc.collect()
K.clear_session()
print(best_accs)