-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy patheditnts.py
457 lines (370 loc) · 21.2 KB
/
editnts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from __future__ import unicode_literals, print_function, division
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
use_cuda = torch.cuda.is_available()
import data
from torch.nn.utils.rnn import pack_padded_sequence as pack
from torch.nn.utils.rnn import pad_packed_sequence as unpack
MAX_LEN =100
PAD = 'PAD' # This has a vocab id, which is used to represent out-of-vocabulary words [0]
UNK = 'UNK' # This has a vocab id, which is used to represent out-of-vocabulary words [1]
KEEP = 'KEEP' # This has a vocab id, which is used for copying from the source [2]
DEL = 'DEL' # This has a vocab id, which is used for deleting the corresponding word [3]
START = 'START' # this has a vocab id, which is uded for indicating start of the sentence for decoding [4]
STOP = 'STOP' # This has a vocab id, which is used to stop decoding [5]
PAD_ID = 0 # This has a vocab id, which is used to represent out-of-vocabulary words [0]
UNK_ID = 1 # This has a vocab id, which is used to represent out-of-vocabulary words [1]
KEEP_ID = 2 # This has a vocab id, which is used for copying from the source [2]
DEL_ID = 3 # This has a vocab id, which is used for deleting the corresponding word [3]
START_ID = 4 # this has a vocab id, which is uded for indicating start of the sentence for decoding [4]
STOP_ID = 5 # This has a vocab id, which is used to stop decoding [5]
def unsort(x_sorted, sorted_order):
x_unsort = torch.zeros_like(x_sorted)
x_unsort[:, sorted_order,:] = x_sorted
return x_unsort
class EncoderRNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, pos_vocab_size, pos_embedding_dim,hidden_size, n_layers=1, embedding=None, embeddingPOS=None,dropout=0.3):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
if embedding is None:
self.embedding = nn.Embedding(vocab_size, embedding_dim)
else:
self.embedding = embedding
if embeddingPOS is None:
self.embeddingPOS = nn.Embedding(pos_vocab_size, pos_embedding_dim)
else:
self.embeddingPOS = embeddingPOS
self.rnn = nn.LSTM(embedding_dim+pos_embedding_dim, hidden_size, num_layers=n_layers, batch_first=True, bidirectional=True)
self.drop = nn.Dropout(dropout)
def forward(self, inp, inp_pos, hidden):
#inp and inp pose should be both sorted
inp_sorted=inp[0]
inp_lengths_sorted=inp[1]
inp_sort_order=inp[2]
inp_pos_sorted = inp_pos[0]
inp_pos_lengths_sorted = inp_pos[1]
inp_pos_sort_order = inp_pos[2]
emb = self.embedding(inp_sorted)
emb_pos = self.embeddingPOS(inp_pos_sorted)
embed_cat = torch.cat((emb,emb_pos),dim=2)
packed_emb = pack(embed_cat, inp_lengths_sorted,batch_first=True)
memory_bank, encoder_final = self.rnn(packed_emb, hidden)
memory_bank = unpack(memory_bank)[0]
memory_bank = unsort(memory_bank, inp_sort_order)
h_unsorted=unsort(encoder_final[0], inp_sort_order)
c_unsorted=unsort(encoder_final[1], inp_sort_order)
return memory_bank.transpose(0,1), (h_unsorted,c_unsorted)
def initHidden(self, bsz):
weight = next(self.parameters()).data
return Variable(weight.new(self.n_layers * 2, bsz, self.hidden_size).zero_()), \
Variable(weight.new(self.n_layers * 2, bsz, self.hidden_size).zero_())
class EditDecoderRNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_size, n_layers=1, embedding=None):
super(EditDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.n_layers = n_layers
if embedding is None:
self.embedding = nn.Embedding(vocab_size, embedding_dim)
else:
self.embedding = embedding
self.rnn_edits = nn.LSTM(embedding_dim, hidden_size, num_layers=n_layers, batch_first=True)
self.rnn_words = nn.LSTM(embedding_dim, hidden_size, num_layers=n_layers, batch_first=True)
self.attn_Projection_org = nn.Linear(hidden_size, hidden_size, bias=False)
# self.attn_Projection_scpn = nn.Linear(hidden_size, hidden_size, bias=False) #hard attention here
self.attn_MLP = nn.Sequential(nn.Linear(hidden_size * 4, embedding_dim),
nn.Tanh())
self.out = nn.Linear(embedding_dim, self.vocab_size)
self.out.weight.data = self.embedding.weight.data[:self.vocab_size]
def execute(self, symbol, input, lm_state):
"""
:param symbol: token_id for predicted edit action (in teacher forcing mode, give the true one)
:param input: the word_id being editted currently
:param lm_state: last lstm state
:return:
"""
# predicted_symbol = KEEP -> feed input to RNN_LM
# predicted_symbol = DEL -> do nothing, return current lm_state
# predicted_symbol = new word -> feed that word to RNN_LM
is_keep = torch.eq(symbol, data.KEEP_ID)
is_del = torch.eq(symbol, data.DEL_ID)
if is_del:
return lm_state
elif is_keep: # return lstm with kept word learned in lstm
_, new_lm_state = self.rnn_words(self.embedding(input.view(-1, 1)), lm_state)
else: #consider as insert here
# print(symbol.item())
input = self.embedding(symbol.view(-1,1))
_, new_lm_state = self.rnn_words(input,lm_state)
return new_lm_state
def execute_batch(self, batch_symbol, batch_input, batch_lm_state):
batch_h = batch_lm_state[0]
batch_c = batch_lm_state[1]
bsz = batch_symbol.size(0)
unbind_new_h = []
unbind_new_c = []
# unbind all batch inputs
unbind_symbol = torch.unbind(batch_symbol,dim=0)
unbind_input = torch.unbind(batch_input,dim=0)
unbind_h = torch.unbind(batch_h,dim=1)
unbind_c = torch.unbind(batch_c,dim=1)
for i in range(bsz):
elem=self.execute(unbind_symbol[i], unbind_input[i], (unbind_h[i].view(1,1,-1), unbind_c[i].view(1,1,-1)))
unbind_new_h.append(elem[0])
unbind_new_c.append(elem[1])
new_batch_lm_h = torch.cat(unbind_new_h,dim=1)
new_batch_lm_c = torch.cat(unbind_new_c,dim=1)
return (new_batch_lm_h,new_batch_lm_c)
def forward(self, input_edits, hidden_org,encoder_outputs_org, org_ids, simp_sent,teacher_forcing_ratio=1.):
#input_edits and simp_sent need to be padded with START
bsz, nsteps = input_edits.size()
# revisit each word and then decide the action, for each action, do the modification and calculate rouge difference
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
decoder_out = []
counter_for_keep_del = np.zeros(bsz, dtype=int)
counter_for_keep_ins =np.zeros(bsz, dtype=int)
# decoder in the training:
if use_teacher_forcing:
embedded_edits = self.embedding(input_edits)
output_edits, hidden_edits = self.rnn_edits(embedded_edits, hidden_org)
embedded_words = self.embedding(simp_sent)
output_words, hidden_words = self.rnn_words(embedded_words, hidden_org)
key_org = self.attn_Projection_org(output_edits) # bsz x nsteps x nhid MIGHT USE WORD HERE
logits_org = torch.bmm(key_org, encoder_outputs_org.transpose(1, 2)) # bsz x nsteps x encsteps
attn_weights_org = F.softmax(logits_org, dim=-1) # bsz x nsteps x encsteps
attn_applied_org = torch.bmm(attn_weights_org, encoder_outputs_org) # bsz x nsteps x nhid
for t in range(nsteps-1):
# print(t)
decoder_output_t = output_edits[:, t:t + 1, :]
attn_applied_org_t = attn_applied_org[:, t:t + 1, :]
## find current word
inds = torch.LongTensor(counter_for_keep_del)
dummy = inds.view(-1, 1, 1)
dummy = dummy.expand(dummy.size(0), dummy.size(1), encoder_outputs_org.size(2)).cuda()
c = encoder_outputs_org.gather(1, dummy)
inds = torch.LongTensor(counter_for_keep_ins)
dummy = inds.view(-1, 1, 1)
dummy = dummy.expand(dummy.size(0), dummy.size(1), output_words.size(2)).cuda()
c_word = output_words.gather(1, dummy)
output_t = torch.cat((decoder_output_t, attn_applied_org_t, c,c_word),
2) # bsz*nsteps x nhid*2
output_t = self.attn_MLP(output_t)
output_t = F.log_softmax(self.out(output_t), dim=-1)
decoder_out.append(output_t)
# interpreter's output from lm
gold_action = input_edits[:, t + 1].data.cpu().numpy() # might need to realign here because start added
counter_for_keep_del = [i[0] + 1 if i[1] == 2 or i[1] == 3 else i[0]
for i in zip(counter_for_keep_del, gold_action)]
counter_for_keep_ins = [i[0] + 1 if i[1] != DEL_ID and i[1] != STOP_ID and i[1] != PAD_ID else i[0]
for i in zip(counter_for_keep_ins, gold_action)]
check1 = sum([x >= org_ids.size(1) for x in counter_for_keep_del])
check2 = sum([x >= simp_sent.size(1) for x in counter_for_keep_ins])
if check1 or check2:
# print(org_ids.size(1))
# print(counter_for_keep_del)
break
else: # no teacher forcing
decoder_input_edit = input_edits[:, :1]
decoder_input_word=simp_sent[:,:1]
t, tt = 0, max(MAX_LEN,input_edits.size(1)-1)
# initialize
embedded_edits = self.embedding(decoder_input_edit)
output_edits, hidden_edits = self.rnn_edits(embedded_edits, hidden_org)
embedded_words = self.embedding(decoder_input_word)
output_words, hidden_words = self.rnn_words(embedded_words, hidden_org)
#
# # give previous word from tgt simp_sent
# inds = torch.LongTensor(counter_for_keep_ins)
# dummy = inds.view(-1, 1, 1)
# dummy = dummy.expand(dummy.size(0), dummy.size(1), output_words.size(2)).cuda()
# c_word = output_words.gather(1, dummy)
while t < tt:
if t>0:
embedded_edits = self.embedding(decoder_input_edit)
output_edits, hidden_edits = self.rnn_edits(embedded_edits, hidden_edits)
key_org = self.attn_Projection_org(output_edits) # bsz x nsteps x nhid
logits_org = torch.bmm(key_org, encoder_outputs_org.transpose(1, 2)) # bsz x nsteps x encsteps
attn_weights_org_t = F.softmax(logits_org, dim=-1) # bsz x nsteps x encsteps
attn_applied_org_t = torch.bmm(attn_weights_org_t, encoder_outputs_org) # bsz x nsteps x nhid
## find current word
inds = torch.LongTensor(counter_for_keep_del)
dummy = inds.view(-1, 1, 1)
dummy = dummy.expand(dummy.size(0), dummy.size(1), encoder_outputs_org.size(2)).cuda()
c = encoder_outputs_org.gather(1, dummy)
output_t = torch.cat((output_edits, attn_applied_org_t, c, hidden_words[0]),
2) # bsz*nsteps x nhid*2
output_t = self.attn_MLP(output_t)
output_t = F.log_softmax(self.out(output_t), dim=-1)
decoder_out.append(output_t)
decoder_input_edit=torch.argmax(output_t,dim=2)
# gold_action = input[:, t + 1].vocab_data.cpu().numpy() # might need to realign here because start added
pred_action= torch.argmax(output_t,dim=2)
counter_for_keep_del = [i[0] + 1 if i[1] == 2 or i[1] == 3 or i[1] == 5 else i[0]
for i in zip(counter_for_keep_del, pred_action)]
# update rnn_words
# find previous generated word
# give previous word from tgt simp_sent
dummy_2 = inds.view(-1, 1).cuda()
org_t = org_ids.gather(1, dummy_2)
hidden_words = self.execute_batch(pred_action, org_t, hidden_words) # we give the editted subsequence
# hidden_words = self.execute_batch(pred_action, org_t, hidden_org) #here we only give the word
t += 1
check = sum([x >= org_ids.size(1) for x in counter_for_keep_del])
if check:
break
return torch.cat(decoder_out, dim=1), hidden_edits
def initHidden(self, bsz):
weight = next(self.parameters()).data
return Variable(weight.new(self.n_layers, bsz, self.hidden_size).zero_()), \
Variable(weight.new(self.n_layers, bsz, self.hidden_size).zero_())
def beam_forwad_step(self,decoder_input_edits,hidden_edits,hidden_words, org_ids,encoder_outputs_org,counter_for_keep_del,beam_size=5):
#buffers: each with k elements for next step
decoder_input_k=[]
hidden_edits_k=[]
counter_for_keep_del_k=[]
prob_k=[]
hidden_words_k=[]
# given decoder hidden, forward one step
embedded = self.embedding(decoder_input_edits)
decoder_output_t, hidden_edits = self.rnn_edits(embedded, hidden_edits)
key_org = self.attn_Projection_org(decoder_output_t) # bsz x nsteps x nhid
logits_org = torch.bmm(key_org, encoder_outputs_org.transpose(1, 2)) # bsz x nsteps x encsteps
attn_weights_org_t = F.softmax(logits_org, dim=-1) # bsz x nsteps x encsteps
attn_applied_org_t = torch.bmm(attn_weights_org_t, encoder_outputs_org) # bsz x nsteps x nhid
## find current word
inds = torch.LongTensor(counter_for_keep_del)
dummy = inds.view(-1, 1, 1)
dummy = dummy.expand(dummy.size(0), dummy.size(1), encoder_outputs_org.size(2)).cuda()
c = encoder_outputs_org.gather(1, dummy)
output_t = torch.cat((decoder_output_t, attn_applied_org_t, c, hidden_words[0]),
2) # bsz*nsteps x nhid*2
output_t = self.attn_MLP(output_t)
output_t = F.log_softmax(self.out(output_t), dim=-1)
# update rnn_words
# find previous generated word
# give previous word from tgt simp_sent
topv, topi = torch.topk(output_t,beam_size, dim=2)
for b in range(beam_size):
prob_t_k=topv[:,:,b]
out_id_t_k=topi[:,:,b]
counter_for_keep_del = [i[0] + 1 if i[1] == 2 or i[1] == 3 or i[1] == 5 else i[0]
for i in zip(counter_for_keep_del, out_id_t_k)]
dummy_2 = inds.view(-1, 1).cuda()
org_t = org_ids.gather(1, dummy_2)
hidden_words = self.execute_batch(out_id_t_k, org_t, hidden_words) # input[:, t + 1]=gold action,
decoder_input_k.append(out_id_t_k)
hidden_edits_k.append(hidden_edits)
prob_k.append(prob_t_k)
hidden_words_k.append(hidden_words)
counter_for_keep_del_k.append(counter_for_keep_del)
return decoder_input_k,hidden_edits_k,hidden_words_k,prob_k,counter_for_keep_del_k
def beam_forward(self, input_edits, simp_sent, hidden_org,encoder_outputs_org, org_ids, beam_size=5):
# initialize for beam search
bsz, nsteps = input_edits.size()
# decoder_out = []
counter_for_keep_del = np.zeros(bsz, dtype=int)
# decoder_input = input[:, :1]
t, tt = 0, max(MAX_LEN, input_edits.size(1) - 1)
# embedded = self.embedding(decoder_input)
# output, hidden = self.rnn(embedded, hidden_org)
# initialize for beam list
best_k_seqs = [[input_edits[:, :1]]]
best_k_probs = [0.]
best_k_hidden_edits = [hidden_org]
best_k_hidden_words=[hidden_org]
best_k_counters =[counter_for_keep_del]
while t < tt:
# print(t)
next_best_k_squared_seq = []
next_best_k_squared_probs = []
next_best_k_squared_counters = []
next_best_k_squared_hidden_edits = []
next_best_k_squared_hidden_words = []
for b in range(len(best_k_seqs)):
seq = best_k_seqs[b]
prob = best_k_probs[b]
counter = best_k_counters[b]
hidden_edits = best_k_hidden_edits[b]
hidden_words = best_k_hidden_words[b]
check = sum([x >= org_ids.size(1) for x in counter])
if seq[-1].item() == STOP_ID or check:
# if end of token, make sure no children
next_best_k_squared_seq.append(seq)
next_best_k_squared_probs.append(prob)
next_best_k_squared_counters.append(counter)
next_best_k_squared_hidden_edits.append(hidden_edits)
next_best_k_squared_hidden_words.append(hidden_words)
else:
# append the top k children
decoder_input_k, hidden_edits_k,hidden_words_k, prob_k, counter_for_keep_del_k=self.beam_forwad_step(seq[-1],
hidden_edits,hidden_words,org_ids,encoder_outputs_org,counter,beam_size)
for i in range(beam_size):
next_seq = seq[:]
next_seq.append(decoder_input_k[i])
next_best_k_squared_seq.append(next_seq)
next_best_k_squared_probs.append(prob + prob_k[i].item())
next_best_k_squared_counters.append(counter_for_keep_del_k[i])
next_best_k_squared_hidden_edits.append(hidden_edits_k[i])
next_best_k_squared_hidden_words.append(hidden_words_k[i])
# contract to the best k
indexs = np.argsort(next_best_k_squared_probs)[::-1][:beam_size]
best_k_seqs = [next_best_k_squared_seq[i] for i in indexs]
best_k_probs = [next_best_k_squared_probs[i] for i in indexs]
best_k_counters = [next_best_k_squared_counters[i] for i in indexs]
best_k_hidden_edits = [next_best_k_squared_hidden_edits[i] for i in indexs]
best_k_hidden_words = [next_best_k_squared_hidden_words[i] for i in indexs]
t +=1
return best_k_seqs, best_k_probs, best_k_hidden_edits,best_k_hidden_words,best_k_counters
class EditNTS(nn.Module):
def __init__(self, config, n_layers=2):
super(EditNTS, self).__init__()
self.embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
if not(config.pretrained_embedding is None):
print('load pre-trained embeddings')
self.embedding.weight.data.copy_(torch.from_numpy(config.pretrained_embedding))
self.embeddingPOS = nn.Embedding(config.pos_vocab_size, config.pos_embedding_dim)
self.encoder1 = EncoderRNN(config.vocab_size, config.embedding_dim,
config.pos_vocab_size, config.pos_embedding_dim,
config.word_hidden_units,
n_layers,
self.embedding, self.embeddingPOS)
self.decoder = EditDecoderRNN(config.vocab_size, config.embedding_dim, config.word_hidden_units * 2,
n_layers, self.embedding)
def forward(self,org,output,org_ids,org_pos,simp_sent,teacher_forcing_ratio=1.0):
def transform_hidden(hidden): #for bidirectional encoders
h, c = hidden
h = torch.cat([h[0], h[1]], dim=1)[None, :, :]
c = torch.cat([c[0], c[1]], dim=1)[None, :, :]
hidden = (h, c)
return hidden
hidden_org = self.encoder1.initHidden(org[0].size(0))
encoder_outputs_org, hidden_org = self.encoder1(org,org_pos,hidden_org)
hidden_org = transform_hidden(hidden_org)
logp, _ = self.decoder(output, hidden_org, encoder_outputs_org,org_ids,simp_sent,teacher_forcing_ratio)
return logp
def beamsearch(self, org, input_edits,simp_sent,org_ids,org_pos, beam_size=5):
def transform_hidden(hidden): #for bidirectional encoders
h, c = hidden
h = torch.cat([h[0], h[1]], dim=1)[None, :, :]
c = torch.cat([c[0], c[1]], dim=1)[None, :, :]
hidden = (h, c)
return hidden
hidden_org = self.encoder1.initHidden(org[0].size(0))
encoder_outputs_org, hidden_org = self.encoder1(org,org_pos,hidden_org)
hidden_org = transform_hidden(hidden_org)
best_k_seqs, best_k_probs, best_k_hidden_edits, best_k_hidden_words, best_k_counters =\
self.decoder.beam_forward(input_edits,simp_sent, hidden_org, encoder_outputs_org,org_ids,beam_size)
best_seq_list=[]
for sq in best_k_seqs:
best_seq_list.append([i.item() for i in sq])
# find final best output
index = np.argsort(best_k_probs)[::-1][0]
best_seq = best_k_seqs[index]
best_seq_np=[i.item() for i in best_seq]
return best_seq_list