-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathView_para.py
71 lines (69 loc) · 2.29 KB
/
View_para.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import tensorflow as tf
import scipy.io as scio
## DDPG
# reader = tf.train.NewCheckpointReader('Model/SRDDPG_V3.ckpt')
# all_variables = reader.get_variable_to_shape_map()
# for key in all_variables:
# print("tensor_name: ", key)
#
# l1=reader.get_tensor('Actor/l1/kernel')
# l2=reader.get_tensor('Actor/l2/kernel')
# l3=reader.get_tensor('Actor/l3/kernel')
# l4=reader.get_tensor('Actor/l4/kernel')
# a=reader.get_tensor('Actor/a/kernel')
# scio.savemat('ANALYSE/SRDDPG',
# {'l1': l1,
# 'l2': l2,
# 'l3':l3,
# 'l4': l4,
# 'a': a,})
#
# # reader = tf.train.NewCheckpointReader('Model/SRDDPG_V3_COMPRESS.ckpt')
# reader = tf.train.NewCheckpointReader('Model/Group_V1.ckpt')
# all_variables = reader.get_variable_to_shape_map()
#
#
# l1=reader.get_tensor('Actor/l1/kernel')
# l2=reader.get_tensor('Actor/l2/kernel')
# l3=reader.get_tensor('Actor/l3/kernel')
# l4=reader.get_tensor('Actor/l4/kernel')
# a=reader.get_tensor('Actor/a/kernel')
# scio.savemat('ANALYSE/SRDDPG_COMPRESS',
# {'l1_COM': l1,
# 'l2_COM': l2,
# 'l3_COM':l3,
# 'l4_COM': l4,
# 'a_COM': a,})
# reader = tf.train.NewCheckpointReader('Model/SRDDPG_V3.ckpt')
# all_variables = reader.get_variable_to_shape_map()
# for key in all_variables:
# print("tensor_name: ", key)
#
# l1=reader.get_tensor('Actor/l1/kernel')
# l2=reader.get_tensor('Actor/l2/kernel')
# l3=reader.get_tensor('Actor/l3/kernel')
# l4=reader.get_tensor('Actor/l4/kernel')
# a=reader.get_tensor('Actor/a/kernel')
# scio.savemat('ANALYSE/SRDDPG',
# {'l1': l1,
# 'l2': l2,
# 'l3':l3,
# 'l4': l4,
# 'a': a,})
#
reader = tf.train.NewCheckpointReader('Model/PPO.ckpt')
all_variables = reader.get_variable_to_shape_map()
for key in all_variables:
print("tensor_name: ", key)
# l1=reader.get_tensor('Actor/l1/kernel')
# l2=reader.get_tensor('Actor/l2/kernel')
# l3=reader.get_tensor('Actor/l3/kernel')
# l4=reader.get_tensor('Actor/l4/kernel')
# a=reader.get_tensor('Actor/a/kernel')
# scio.savemat('ANALYSE/SRDDPG_COMPRESS',
# {'l1_COM': l1,
# 'l2_COM': l2,
# 'l3_COM':l3,
# 'l4_COM': l4,
# 'a_COM': a,})