forked from SamitHuang/EV_GCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval_evgcn.py
121 lines (101 loc) · 5.24 KB
/
train_eval_evgcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import sys
import torch
import torch_geometric.datasets as GeoData
from torch_geometric.data import DataLoader, DataListLoader
from torch_geometric.nn.data_parallel import DataParallel
import random
import numpy as np
from opt import *
from EV_GCN import EV_GCN
from utils.metrics import accuracy, auc, prf
from dataloader import dataloader
if __name__ == '__main__':
opt = OptInit().initialize()
print(' Loading dataset ...')
dl = dataloader()
raw_features, y, nonimg = dl.load_data()
n_folds = 10
cv_splits = dl.data_split(n_folds)
corrects = np.zeros(n_folds, dtype=np.int32)
accs = np.zeros(n_folds, dtype=np.float32)
aucs = np.zeros(n_folds, dtype=np.float32)
prfs = np.zeros([n_folds,3], dtype=np.float32)
for fold in range(n_folds):
print("\r\n========================== Fold {} ==========================".format(fold))
train_ind = cv_splits[fold][0]
test_ind = cv_splits[fold][1]
print(' Constructing graph data...')
# extract node features
node_ftr = dl.get_node_features(train_ind)
# get PAE inputs
edge_index, edgenet_input = dl.get_PAE_inputs(nonimg)
# normalization for PAE
edgenet_input = (edgenet_input- edgenet_input.mean(axis=0)) / edgenet_input.std(axis=0)
# build network architecture
model = EV_GCN(node_ftr.shape[1], opt.num_classes, opt.dropout, edge_dropout=opt.edropout, hgc=opt.hgc, lg=opt.lg, edgenet_input_dim=2*nonimg.shape[1]).to(opt.device)
model = model.to(opt.device)
# build loss, optimizer, metric
loss_fn =torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.wd)
features_cuda = torch.tensor(node_ftr, dtype=torch.float32).to(opt.device)
edge_index = torch.tensor(edge_index, dtype=torch.long).to(opt.device)
edgenet_input = torch.tensor(edgenet_input, dtype=torch.float32).to(opt.device)
labels = torch.tensor(y, dtype=torch.long).to(opt.device)
fold_model_path = opt.ckpt_path + "/fold{}.pth".format(fold)
def train():
print(" Number of training samples %d" % len(train_ind))
print(" Start training...\r\n")
acc = 0
for epoch in range(opt.num_iter):
model.train()
optimizer.zero_grad()
with torch.set_grad_enabled(True):
node_logits, edge_weights = model(features_cuda, edge_index, edgenet_input)
loss = loss_fn(node_logits[train_ind], labels[train_ind])
loss.backward()
optimizer.step()
correct_train, acc_train = accuracy(node_logits[train_ind].detach().cpu().numpy(), y[train_ind])
model.eval()
with torch.set_grad_enabled(False):
node_logits, _ = model(features_cuda, edge_index, edgenet_input)
logits_test = node_logits[test_ind].detach().cpu().numpy()
correct_test, acc_test = accuracy(logits_test, y[test_ind])
auc_test = auc(logits_test,y[test_ind])
prf_test = prf(logits_test,y[test_ind])
print("Epoch: {},\tce loss: {:.5f},\ttrain acc: {:.5f}".format(epoch, loss.item(), acc_train.item()))
if acc_test > acc and epoch >9:
acc = acc_test
correct = correct_test
aucs[fold] = auc_test
prfs[fold] = prf_test
if opt.ckpt_path !='':
if not os.path.exists(opt.ckpt_path):
#print("Checkpoint Directory does not exist! Making directory {}".format(opt.ckpt_path))
os.makedirs(opt.ckpt_path)
torch.save(model.state_dict(), fold_model_path)
accs[fold] = acc
corrects[fold] = correct
print("\r\n => Fold {} test accuacry {:.5f}".format(fold, acc))
def evaluate():
print(" Number of testing samples %d" % len(test_ind))
print(' Start testing...')
model.load_state_dict(torch.load(fold_model_path))
model.eval()
node_logits, _ = model(features_cuda, edge_index, edgenet_input)
logits_test = node_logits[test_ind].detach().cpu().numpy()
corrects[fold], accs[fold] = accuracy(logits_test, y[test_ind])
aucs[fold] = auc(logits_test,y[test_ind])
prfs[fold] = prf(logits_test,y[test_ind])
print(" Fold {} test accuracy {:.5f}, AUC {:.5f}".format(fold, accs[fold], aucs[fold]))
if opt.train==1:
train()
elif opt.train==0:
evaluate()
print("\r\n========================== Finish ==========================")
n_samples = raw_features.shape[0]
acc_nfold = np.sum(corrects)/n_samples
print("=> Average test accuracy in {}-fold CV: {:.5f}".format(n_folds, acc_nfold))
print("=> Average test AUC in {}-fold CV: {:.5f}".format(n_folds, np.mean(aucs)))
se, sp, f1 = np.mean(prfs,axis=0)
print("=> Average test sensitivity {:.4f}, specificity {:.4f}, F1-score {:.4f}".format(se, sp, f1))