-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmod_cloud_remove_rec.py
406 lines (327 loc) · 15.1 KB
/
mod_cloud_remove_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
import time
import shutil
import numpy as np
import tensorflow as tf
import tensorflow.layers as tl
from utils import mod_util
from utils import img_util
"""
2018-10-10 Yonv1943
Reference: https://github.com/jiamings/wgan
Reference: https://github.com/cameronfabbri/Improved-Wasserstein-GAN
Reference: https://github.com/znxlwm/tensorflow-MNIST-GAN-DCGAN
2018-12-29 stable
"""
class Config(object):
train_epoch = int(2 ** 13 * 1.5)
train_size = int(2 ** 17 * 1.2)
eval_size = 2 ** 4 - 2 # 2 ** 3
batch_size = int(2 ** 4)
batch_epoch = train_size // batch_size
size = int(2 ** 8)
replace_num = int(0.368 * batch_size)
learning_rate = 8e-5 # 1e-4
show_gap = 2 ** 7 # time
eval_gap = 2 ** 11 # time
gpu_limit = 0.9 # 0.0 ~ 1.0
gpu_id = 0
data_dir = '/mnt/sdb1/data_sets'
aerial_dir = os.path.join(data_dir, 'AerialImageDataset/train')
cloud_dir = os.path.join(data_dir, 'ftp.nnvl.noaa.gov_color_IR_2018')
grey_dir = os.path.join(data_dir, 'CloudGreyDataset_%dx%d' % (size, size))
def __init__(self, model_dir='mod'):
self.model_dir = model_dir
self.model_name = 'mod'
self.model_path = os.path.join(self.model_dir, self.model_name)
self.model_npz = os.path.join(self.model_dir, self.model_name + '.npz')
self.model_log = os.path.join(self.model_dir, 'training_npy.txt')
if __name__ != '__main__':
from configure import Config # for test
print("|| TEST")
C = Config('mod_cloud_remove_rec')
tf.set_random_seed(time.time() * 1943 % 178320049)
def auto_encoder(inp0, dim, out_dim, name, reuse, training=True):
padding1 = tf.constant(((0, 0), (1, 1), (1, 1), (0, 0)))
def leru_batch_norm(ten):
ten = tl.batch_normalization(ten, training=training)
ten = tf.nn.leaky_relu(ten)
return ten
def conv_tp(ten, idx):
filters = (2 ** idx) * dim
ten = tl.conv2d_transpose(ten, filters, 3, 2, 'same', activation=leru_batch_norm)
return ten
def conv_pad1(ten, idx, step=1):
filters = (2 ** idx) * dim
ten = tf.pad(ten, padding1, 'REFLECT')
ten = tl.conv2d(ten, filters, 3, step, 'valid', activation=tf.nn.leaky_relu)
return ten
def conv_res(ten, idx):
return conv_pad1(conv_pad1(ten, idx), idx) + conv_pad1(ten, idx)
with tf.variable_scope(name, reuse=reuse):
ten1 = conv_pad1(inp0, 0, 2)
ten2 = conv_pad1(ten1, 1, 2)
ten3 = conv_pad1(ten2, 2, 2)
ten4 = conv_pad1(ten3, 3, 2)
ten5 = conv_pad1(ten4, 4, 2)
ten6 = conv_pad1(ten5, 5, 2)
ten6 = conv_res(ten6, 5)
ten5 = conv_res(ten5, 4)
ten5 = conv_res(ten5, 4)
ten5 = tf.concat((ten5, conv_tp(ten6, 5)), axis=3)
ten5 = conv_pad1(ten5, 5, 1)
ten4 = conv_res(ten4, 3)
ten4 = conv_res(ten4, 3)
ten4 = conv_res(ten4, 3)
ten4 = tf.concat((ten4, conv_tp(ten5, 4)), axis=3)
ten4 = conv_pad1(ten4, 4, 1)
ten3 = conv_tp(ten4, 3)
ten2 = conv_tp(ten3, 2)
ten1 = conv_tp(ten2, 1)
ten0 = conv_tp(ten1, 0)
ten0 = conv_pad1(ten0, 0, 1)
ten0 = tf.concat((ten0, inp0), axis=3)
ten0 = tl.conv2d(ten0, out_dim, 1, 1, 'same', activation=tf.nn.sigmoid)
return ten0
def init_train():
# tf.reset_default_graph()
gene_name, gene_dim = 'gene', 32
disc_name, disc_dim = 'disc', 32
'''init'''
inp_ground = tf.placeholder(tf.uint8, [None, C.size, C.size, 3])
ten_ground = tf.to_float(inp_ground)
ten_ground *= tf.random_uniform([], 0.00382, 0.00402) + tf.random_uniform([1, 1, 1, 3], -0.00012, 0.00012)
ten_ground += tf.random_uniform([], -0.02, 0.02) + tf.random_uniform([1, 1, 1, 3], -0.02, 0.02)
ten_ground = tf.clip_by_value(ten_ground, 0, 1)
inp_mask01 = tf.placeholder(tf.uint8, [None, C.size, C.size, 1])
ten_mask01 = tf.to_float(inp_mask01) / 255
'''func'''
ten_mask10 = (1.0 - ten_mask01)
ten_ragged = ten_ground * ten_mask10
ten_patch3 = auto_encoder(ten_ragged - ten_mask01,
gene_dim, 3, gene_name, reuse=False)
out_ground = ten_ragged + ten_patch3 * ten_mask01
dis_real_1 = auto_encoder(ten_ground, disc_dim, 1, disc_name, reuse=False)
dis_fake_1 = auto_encoder(out_ground, disc_dim, 1, disc_name, reuse=True)
'''buff'''
inp_grdbuf = tf.placeholder(tf.uint8, [None, C.size, C.size, 3])
ten_grdbuf = tf.to_float(inp_grdbuf) / 255
inp_mskbuf = tf.placeholder(tf.uint8, [None, C.size, C.size, 1])
ten_mskbuf = tf.to_float(inp_mskbuf) / 255
dis_buff_1 = auto_encoder(ten_grdbuf, disc_dim, 1, disc_name, reuse=True)
'''loss'''
zero_mask1 = tf.zeros_like(dis_real_1)
# dif_patch3 = ten_ground - ten_patch3
# dif_patch3 = tf.image.resize_images(dif_patch3, (C.size//4, C.size//4))
# loss_gene = tf.reduce_mean((zero_mask1 - dis_fake_1) ** 2 * 3)
# loss_gene += tf.reduce_mean((ten_ground - ten_patch3) ** 2)
#
# loss_disc = tf.reduce_mean((zero_mask1 - dis_real_1) ** 2)
# loss_disc += tf.reduce_mean((ten_mask01 - dis_fake_1) ** 2)
# loss_disc += tf.reduce_mean((ten_mskbuf - dis_buff_1) ** 2) # buffer
loss_gene = tf.losses.mean_pairwise_squared_error(zero_mask1, dis_fake_1) * 2
loss_gene += tf.losses.mean_pairwise_squared_error(ten_ground * ten_mask01,
ten_patch3 * ten_mask01)
loss_disc = tf.losses.mean_pairwise_squared_error(zero_mask1, dis_real_1)
loss_disc += tf.losses.mean_pairwise_squared_error(ten_mask01, dis_fake_1)
loss_disc += tf.losses.mean_pairwise_squared_error(ten_mskbuf, dis_buff_1) # buffer
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
tf_vars = tf.trainable_variables()
optz_gene = tf.train.AdamOptimizer(C.learning_rate, beta1=0.5, beta2=0.9) \
.minimize(loss_gene, var_list=[v for v in tf_vars if v.name.startswith(gene_name)])
optz_disc = tf.train.AdamOptimizer(C.learning_rate, beta1=0.5, beta2=0.9) \
.minimize(loss_disc, var_list=[v for v in tf_vars if v.name.startswith(disc_name)])
loss = [loss_gene, loss_disc]
optz = [optz_gene, optz_disc]
int_ground = tf.cast(out_ground * 255, tf.uint8) # for buff fetch
int_mask01 = tf.cast(ten_mask01 * 255, tf.uint8) # for buff fetch
train_fetch = [int_ground, int_mask01, loss, optz]
eval_fetch = [ten_ground, ten_patch3,
out_ground, ten_mask01, dis_fake_1]
return inp_ground, inp_mask01, inp_grdbuf, inp_mskbuf, train_fetch, eval_fetch
def process_train(feed_queue, buff_queue):
print("||Training Initialize")
inp_ground, inp_mask01, inp_grdbuf, inp_mskbuf, fetch, eval_fetch = init_train()
optz_gene = fetch[3][0]
optz_disc = fetch[3][1]
loss_gene = loss_disc = 0
sess = mod_util.get_sess(C)
saver, logger, pre_epoch = mod_util.get_saver_logger(C, sess)
print("||Training Check")
eval_list = feed_queue.get()
eval_feed_dict = {inp_ground: eval_list[0],
inp_mask01: eval_list[1],
inp_grdbuf: eval_list[2],
inp_mskbuf: eval_list[3], }
sess.run(eval_fetch, eval_feed_dict)
print("||Training Start")
start_time = show_time = eval_time = time.time()
try:
for epoch in range(C.train_epoch):
batch_losses = list() # init
for i in range(C.batch_size):
batch_data = feed_queue.get()
idx = batch_data[0]
batch_dict = {
inp_ground: batch_data[1],
inp_mask01: batch_data[2],
inp_grdbuf: batch_data[3],
inp_mskbuf: batch_data[4],
}
# fetch[3] = optz_disc
if loss_disc * 8 < loss_gene:
fetch[3] = optz_gene
# elif loss_gene * 8 < loss_disc:
# fetch[3] = optz_disc
else:
fetch[3] = (optz_gene, optz_disc)
buf_ground, buf_mask01, (loss_gene, loss_disc), optz = sess.run(fetch, batch_dict)
batch_losses.append((loss_gene, loss_disc))
buff_queue.put((idx, buf_ground, buf_mask01))
loss_average = np.mean(batch_losses, axis=0)
logger.write('%e %e\n' % (loss_average[0], loss_average[1]))
if time.time() - show_time > C.show_gap:
show_time = time.time()
remain_epoch = C.train_epoch - epoch
remain_time = (show_time - start_time) * remain_epoch / (epoch + 1)
print(end="\n| %3d s |%3d epoch | Loss: %9.3e %9.3e"
% (remain_time, remain_epoch, loss_average[0], loss_average[1]))
if time.time() - eval_time > C.eval_gap:
eval_time = time.time()
logger.close()
logger = open(C.model_log, 'a')
eval_feed_dict[inp_mask01] = np.rot90(eval_feed_dict[inp_mask01], axes=(1, 2))
img_util.get_eval_img(mat_list=sess.run(eval_fetch, eval_feed_dict), channel=3,
img_path="%s/eval-%08d.jpg" % (C.model_dir, pre_epoch + epoch))
print(end=" EVAL %d" % (pre_epoch + epoch))
if os.path.exists(os.path.join(C.model_dir, 'SAVE.MARK')):
os.remove(os.path.join(C.model_dir, 'SAVE.MARK'))
print("\n||Break Training and save:", process_train.__name__)
break
except KeyboardInterrupt:
print("\n||Break Training and save:", process_train.__name__)
print('\n TimeUsed: %d' % int(time.time() - start_time))
saver.save(sess, C.model_path, write_meta_graph=False)
print(" SAVE: %s" % C.model_path)
img_util.get_eval_img(mat_list=sess.run(eval_fetch, eval_feed_dict), channel=3,
img_path="%s/eval-%08d.jpg" % (C.model_dir, 0))
logger.close()
sess.close()
os.rmdir(os.path.join(C.model_dir, 'TRAINING.MARK'))
def process_feed(feed_queue, buff_queue):
ts = C.train_size
bs = C.batch_size
rd = np.random
rd_randint = rd.randint
rd_shuffle = rd.shuffle
def get_mask01(mats, percentile=85):
percentile += rd_randint(-2, +3)
# np.median(ary) == np.percentile(ary, 50)
# np.quantile(ary) == np.percentile(ary, 75)
# thr = cv2.threshold(img, np.percentile(img, 85), 255, cv2.THRESH_BINARY)[1]
thresholds = np.percentile(mats, percentile, axis=(1, 2, 3), keepdims=True)
mats[mats < thresholds] = 0
mats[mats >= thresholds] = 255
return mats
timer = time.time()
grounds = img_util.get_data__ground(ts)
print(" Dataset grounds. Used time:", int(time.time() - timer))
np.random.shuffle(grounds)
print(" Dataset shuffle. Used time:", int(time.time() - timer))
grounds_buff = np.copy(grounds)
print(" Dataset buffers. Used time:", int(time.time() - timer))
mask01s = img_util.get_data__cloud1(ts)
print(" Dataset mask01s. Used time:", int(time.time() - timer))
mask01s_buff = np.zeros_like(mask01s)
print(" Dataset buffers. Used time:", int(time.time() - timer))
eval_id = list(set(np.random.randint(0, ts, C.eval_size * 4)))[:C.eval_size]
feed_queue.put([grounds[eval_id],
get_mask01(mask01s[eval_id]),
grounds_buff[eval_id],
mask01s_buff[eval_id], ]) # for eval
print("||Data_sets: ready for training")
i0_range = np.arange(C.batch_epoch)
i1_range = np.arange(C.batch_epoch)
replace_ids = np.arange(C.batch_size)
def batch_op0(j, k):
j *= bs
k *= bs
mask01_buff = (1 - get_mask01(mask01s[k:k + bs] // 255)).astype(np.uint8)
ground_buff = grounds[j:j + bs] * mask01_buff
feed_queue.put([j,
grounds[j:j + bs],
get_mask01(mask01s[k:k + bs]),
ground_buff,
mask01_buff, ])
while buff_queue.qsize() > 0:
idx, grounds_get, cloud1s_get = buff_queue.get()
grounds_buff[idx:idx + bs] = grounds_get
mask01s_buff[idx:idx + bs] = cloud1s_get
def batch_opn(j, k):
j *= bs
k *= bs
q = rd_randint(ts // 2 - bs)
switch = rd_randint(6)
if switch == 0:
grounds[j:j + bs] = np.rot90(grounds[j:j + bs], axes=(1, 2))
elif switch == 1:
grounds[j:j + bs] = np.flip(grounds[j:j + bs], axis=rd_randint(1, 3))
elif switch == 2:
mask01s[j:j + bs] = np.rot90(mask01s[j:j + bs], axes=(1, 2))
elif switch == 3:
mask01s[j:j + bs] = np.flip(mask01s[j:j + bs], axis=rd_randint(1, 3))
elif switch == 4 and not j <= q <= j + bs:
grounds[j:j + bs], grounds[q:q + bs] = grounds[q:q + bs], grounds[j:j + bs]
elif switch == 5 and not j <= q <= j + bs:
mask01s[j:j + bs], mask01s[q:q + bs] = mask01s[q:q + bs], mask01s[j:j + bs]
feed_queue.put([j,
grounds[j:j + bs],
get_mask01(mask01s[k:k + bs]),
grounds_buff[j:j + bs],
mask01s_buff[j:j + bs], ])
while buff_queue.qsize() > 0:
idx, grounds_get, cloud1s_get = buff_queue.get()
# grounds_buff[idx:idx+bs] = grounds_get
# mask01s_buff[idx:idx+bs] = cloud1s_get
rd_shuffle(replace_ids)
for replace_id in replace_ids[:C.replace_num]:
grounds_buff[replace_id + idx] = grounds_get[replace_id]
mask01s_buff[replace_id + idx] = cloud1s_get[replace_id]
for _ in (0,):
for i in range(C.batch_epoch):
batch_op0(i, i)
for _ in range(1, C.train_epoch):
rd_shuffle(i0_range)
rd_shuffle(i1_range)
for i0, i1 in zip(i0_range, i1_range):
batch_opn(i0, i1)
def run():
print('||GPUid: %d' % C.gpu_id)
print('||Epoch: %d' % C.train_epoch)
print('||Batch: %d' % C.batch_size)
print('||Model: %s' % C.model_dir)
if input("||PRESS: 'y' to REMOVE? ") == 'y':
shutil.rmtree(C.model_dir, ignore_errors=True)
print("||Remove")
# elif input("||PRESS 'y' to UPDATE model_npz? %s: " % C.model_npz) == 'y':
# # mod_util.save_npy(sess, C.model_npz)
# # mod_util.draw_plot(C.model_log)
#
# mod_util.update_npz(src_path='mod_AutoEncoder/mod.npz', dst_path=C.model_npz)
#
# remove_path = os.path.join(C.model_dir, 'checkpoint')
# os.remove(remove_path) if os.path.exists(remove_path) else None
import multiprocessing as mp
feed_queue = mp.Queue(maxsize=8)
buff_queue = mp.Queue(maxsize=8)
process = [mp.Process(target=process_feed, args=(feed_queue, buff_queue)),
mp.Process(target=process_train, args=(feed_queue, buff_queue)), ]
os.makedirs(os.path.join(C.model_dir, 'TRAINING.MARK'), exist_ok=True)
[p.start() for p in process]
# [p.join() for p in process]
while os.path.exists(os.path.join(C.model_dir, 'TRAINING.MARK')):
time.sleep(2)
else:
[p.terminate() for p in process]
if __name__ == '__main__':
run()