-
Notifications
You must be signed in to change notification settings - Fork 3
/
medical_material_options.py
216 lines (179 loc) · 11.2 KB
/
medical_material_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import torch
import os
import pdb
import sys
sys.path.append('./')
import models as models
import data as data
from util import util
class BaseOptions():
def __init__(self):
self.initialized = False
def initialize(self, parser):
parser.add_argument('--gpu_ids', type=str, default='0,1,2', help='gpu ids:e.g.0 0,1,2 1,2 use -1 for CPU')
parser.add_argument('--name', type=str, default='medical_material', required=False, help='name of the experiment.')
parser.add_argument('--model', type=str, default='unet', choices=['unet', 'fedst', 'fedst_ddpm'],
help='chooses which model to use,unet...')
parser.add_argument('--federated_algorithm', type=str, default='fedavg',
choices=['fedavg', 'fedprox', 'feddyn', 'feddc', 'fedddpm'],
help='chooses which federated learning algrithom to use')
parser.add_argument('--net', type=str, default='unet', choices=['unet'],
help='chooses which network to use,unet...')
parser.add_argument('--init_type', type=str, default='xavier_uniform',
help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_gain', type=float, default=1.0,
help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix')
parser.add_argument('--checkpoints_dir', type=str, default='./model_checkpoints', help='models are saved here')
parser.add_argument('--log_dir', default='fedst.log', type=str,
help='customized suffix: opt.name = opt.name + suffix')
parser.add_argument('--epochs', type=int, default=1, metavar='EP',
help='how many epochs will be trained locally')
parser.add_argument('--client_num_in_total', type=int, default=2, metavar='NN',
help='number of workers in a distributed cluster')
parser.add_argument('--client_num_per_round', type=int, default=2, metavar='NN', help='number of workers')
parser.add_argument('--comm_round', type=int, default=50, help='how many round of communications we shoud use')
parser.add_argument('--fineSize', type=int, default=384, help='if_wandb')
parser.add_argument('--resize_or_crop', type=str, default='scale_width',
help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
parser.add_argument('--dataroot', default='./dataset/medical_material', help='path to images')
parser.add_argument('--resultroot', default='./ckpt_medical', help='path to ckpt')
parser.add_argument('--data_type', default='splited', help='[pure|mix|splited]')
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
parser.add_argument('--serial_batches', default=False, action='store_true',
help='if true, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--no_normalize', action='store_true', help='do not use normalization')
parser.add_argument('--dataset_mode', type=str, default='aligned',
help='chooses how datasets are loaded. [aligned,gan]')
parser.add_argument('--batch_size', type=int, default=6, help='input batch size')
parser.add_argument('--input_nc', type=int, default=1, help='input image channels')
parser.add_argument('--output_nc', type=int, default=2, help='output classes')
# loss
parser.add_argument('--loss_type', choices=['CrossEntropyLoss', 'BCW', 'Focal'], default='Focal',
help='loss types')
# [0.0013, 0.0363, 0.3248, 0.3188, 0.3188]
parser.add_argument('--focal_alpha', type=list, default=[0.1, 0.9], help='alpha of focal loss')
##pix2pixHD
parser.add_argument('--no_flip', type=bool, default=True, help='if_wandb')
parser.add_argument('--loadSize', type=int, default=384, help='if_wandb')
parser.add_argument('--no_instance', type=bool, default=True, help='if_wandb')
parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
# gennerator
parser.add_argument('--instance_feat', type=bool, default=False, help='alpah parameter in feddyn')
parser.add_argument('--label_feat', type=bool, default=False, help='alpah parameter in feddyn')
parser.add_argument('--netG', type=str, default='local', help='selects model to use for netG')
parser.add_argument('--ngf', type=int, default=48, help='# of gen filters in first conv layer')
parser.add_argument('--n_downsample_global', type=int, default=4, help='number of downsampling layers in netG')
parser.add_argument('--n_blocks_global', type=int, default=6,
help='number of residual blocks in the global generator network')
parser.add_argument('--n_blocks_local', type=int, default=3,
help='number of residual blocks in the local enhancer network')
parser.add_argument('--n_local_enhancers', type=int, default=1, help='number of local enhancers to use')
parser.add_argument('--niter_fix_global', type=int, default=0,
help='number of epochs that we only train the outmost local enhancer')
parser.add_argument('--norm', type=str, default='batch', help='instance normalization or batch normalization')
parser.add_argument('--load_pretrain', type=str, default='',
help='load the pretrained model from the specified location')
# discraminator
parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to use')
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if which_model_netD==n_layers')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--no_ganFeat_loss', action='store_true',
help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--no_vgg_loss', action='store_true',
help='if specified, do *not* use VGG feature matching loss')
parser.add_argument('--no_lsgan', action='store_true',
help='do *not* use least square GAN, if false, use vanilla GAN')
parser.add_argument('--pool_size', type=int, default=0,
help='the size of image buffer that stores previously generated images')
parser.add_argument('--dyn_alpha', type=int, default=0.0001, help='Feddyn optimize param alpha')
self.initialized = True
return parser
def gather_options(self):
# initialize parser with basic options
if not self.initialized:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
# get the basic options
opt, _ = parser.parse_known_args()
# modify model-related parser options
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
opt, _ = parser.parse_known_args() # parse again with the new defaults
self.parser = parser
return parser.parse_args(args=[])
def parse(self):
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
if opt.net in ['unet11', 'unet16', 'albunet']:
opt.input_nc = 3
# process opt.suffix
if opt.suffix:
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.name = opt.name + suffix
# set gpu ids
gpu_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in gpu_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
# set cuda device
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
self.opt = opt
# self.print_options(opt)
return opt
def print_options(self, opt):
message = ''
message += '---------Options---------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
if self.isTrain:
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
class TrainOptions(BaseOptions):
def initialize(self, parser):
parser = BaseOptions.initialize(self, parser)
# for training
parser.add_argument('--cross_validation', type=bool, default=True,
help='if using cross validation to choose the model')
parser.add_argument('--folds', type=int, default=5, help='how many folds in cross_validation')
parser.add_argument('--total_img_dir_real', type=str, default='train/real_image',
help='where are the training images')
parser.add_argument('--total_label_dir_real', type=str, default='train/real_label',
help='where are the training images')
parser.add_argument('--no_eval', action='store_true', help='no eval in training')
parser.add_argument('--val_img_list', type=str, help='val images name list')
parser.add_argument('--lr', type=float, default=1e-4, help='initial lr')
parser.add_argument('--lr_gamma', type=float, default=0.927,
help='multiply by a gamma every lr_decay_iters iterations')
self.isTrain = True
return parser
class TestOptions(BaseOptions):
def initialize(self, parser):
parser = BaseOptions.initialize(self, parser)
parser.add_argument('--test_img_dir', type=str, default='test/real_image', help='where are the test images')
parser.add_argument('--test_label_dir', type=str, default='test/real_label', help='where are the test labels')
parser.add_argument('--results_dir', type=str, default='./results/', help='save results here')
parser.add_argument('--boundary', type=int, default=255, help='boundary mask 255|0')
self.isTrain = False
return parser
def get_option_setter(dataset_name):
dataset_class = find_dataset_using_name(dataset_name)
return dataset_class.modify_commandline_options