-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptim.py
94 lines (74 loc) · 3.38 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
from torch.optim.optimizer import Optimizer, required
class FedAvg(Optimizer):
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False, variance=0, alpha=0, eps = 1e-5, centered = False):
self.itr = 0
self.a_sum = 0
self.centered = centered
self.gt_avg = {}
self.vt = {}
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov, variance=variance,
alpha = alpha, eps=eps)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(FedAvg, self).__init__(params, defaults)
def __setstate__(self, state):
super(FedAvg, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
alpha = group['alpha']
eps = group['eps']
for idx, p in enumerate(group['params']):
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
param_state = self.state[p]
if 'old_init' not in param_state:
param_state['old_init'] = torch.clone(p.data).detach()
if momentum != 0:
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
if alpha !=0:
self.vt[idx] = alpha*self.vt.get(idx,0)+(1-alpha)*d_p**2
vt = self.vt[idx]
if self.centered:
self.gt_avg[idx] = alpha*self.gt_avg.get(idx,0)+(1-alpha)*d_p
vt = vt - self.gt_avg[p]**2
vt = torch.sqrt(vt)+eps
else:
vt = torch.ones_like(d_p)
# apply proximal update
#d_p.add_(self.mu, p.data - param_state['old_init'])
p.data += -group['lr']/vt*d_p
return loss