-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_resnet.py
208 lines (170 loc) · 7.77 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from wideresnet import *
from resnet import *
from mart import mart_loss
import numpy as np
import time
os.environ["CUDA_VISIBLE_DEVICES"]="0"
parser = argparse.ArgumentParser(description='PyTorch CIFAR MART Defense')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--epochs', type=int, default=120, metavar='N',
help='number of epochs to train')
parser.add_argument('--weight-decay', '--wd', default=3.5e-3,
type=float, metavar='W')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--epsilon', default=0.031,
help='perturbation')
parser.add_argument('--num-steps', default=10,
help='perturb number of steps')
parser.add_argument('--step-size', default=0.007,
help='perturb step size')
parser.add_argument('--beta', default=5.0,
help='weight before kl (misclassified examples)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model', default='resnet',
help='directory of model for saving checkpoint')
parser.add_argument('--save-freq', '-s', default=1, type=int, metavar='N',
help='save frequency')
args = parser.parse_args()
# settings
model_dir = args.model
if not os.path.exists(model_dir):
os.makedirs(model_dir)
log_dir = './log'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 10, 'pin_memory': True} if use_cuda else {}
torch.backends.cudnn.benchmark = True
# setup data loader
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
trainset = torchvision.datasets.CIFAR10(root='../data_attack/', train=True, download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=10)
testset = torchvision.datasets.CIFAR10(root='../data_attack/', train=False, download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, num_workers=10)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
# calculate robust loss
loss = mart_loss(model=model,
x_natural=data,
y=target,
optimizer=optimizer,
step_size=args.step_size,
epsilon=args.epsilon,
perturb_steps=args.num_steps,
beta=args.beta)
loss.backward()
optimizer.step()
# print progress
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def adjust_learning_rate(optimizer, epoch):
"""decrease the learning rate"""
lr = args.lr
if epoch >= 100:
lr = args.lr * 0.001
elif epoch >= 90:
lr = args.lr * 0.01
elif epoch >= 75:
lr = args.lr * 0.1
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def _pgd_whitebox(model,
X,
y,
epsilon=args.epsilon,
num_steps=20,
step_size=0.003):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
random_noise = torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model(X_pgd), y)
loss.backward()
eta = step_size * X_pgd.grad.data.sign()
X_pgd = Variable(X_pgd.data + eta, requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum()
return err, err_pgd
def eval_adv_test_whitebox(model, device, test_loader):
model.eval()
robust_err_total = 0
natural_err_total = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
# pgd attack
X, y = Variable(data, requires_grad=True), Variable(target)
err_natural, err_robust = _pgd_whitebox(model, X, y)
robust_err_total += err_robust
natural_err_total += err_natural
print('natural_acc: ', 1 - natural_err_total / len(test_loader.dataset))
print('robust_acc: ', 1- robust_err_total / len(test_loader.dataset))
return 1 - natural_err_total / len(test_loader.dataset), 1- robust_err_total / len(test_loader.dataset)
def main():
model = ResNet18().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
natural_acc = []
robust_acc = []
for epoch in range(1, args.epochs + 1):
# adjust learning rate for SGD
adjust_learning_rate(optimizer, epoch)
start_time = time.time()
# adversarial training
train(args, model, device, train_loader, optimizer, epoch)
print('================================================================')
natural_err_total, robust_err_total = eval_adv_test_whitebox(model, device, test_loader)
print('using time:', time.time()-start_time)
natural_acc.append(natural_err_total)
robust_acc.append(robust_err_total)
print('================================================================')
file_name = os.path.join(log_dir, 'train_stats.npy')
np.save(file_name, np.stack((np.array(natural_acc), np.array(robust_acc))))
# save checkpoint
if epoch % args.save_freq == 0:
torch.save(model.state_dict(),
os.path.join(model_dir, 'model-res-epoch{}.pt'.format(epoch)))
torch.save(optimizer.state_dict(),
os.path.join(model_dir, 'opt-res-checkpoint_epoch{}.tar'.format(epoch)))
if __name__ == '__main__':
main()