-
Notifications
You must be signed in to change notification settings - Fork 38
/
upernet_wavevit_b_512x512_160k_ade20k.py
39 lines (35 loc) · 1.39 KB
/
upernet_wavevit_b_512x512_160k_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
_base_ = [
'../_base_/models/upernet_wavevit.py', '../_base_/datasets/cade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
model = dict(
backbone=dict(
stem_hidden_dim=64,
embed_dims=[64, 128, 320, 512],
num_heads=[2, 4, 10, 16],
drop_path_rate=0.3, #0.2,
depths=[3, 4, 12, 3],
use_checkpoint=False
),
decode_head=dict(
in_channels=[64, 128, 320, 512],
num_classes=150
),
auxiliary_head=dict(
in_channels=320,
num_classes=150
))
# AdamW optimizer, no weight decay for position embedding & layer norm in backbone
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01,
paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)}))
lr_config = dict(_delete_=True, policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data=dict(samples_per_gpu=2)
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
fp16 = dict()