-
Notifications
You must be signed in to change notification settings - Fork 4
/
inference.py
158 lines (126 loc) · 5.93 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import torch
import torchvision
from PIL import Image
from math import ceil, floor
import argparse
from numpy import inf
import MinkowskiEngine as ME
import os
from utils import *
from data_utils.collations import numpy_to_sparse_tensor
import open3d as o3d
from tqdm import tqdm
from data_utils.data_map import color_map, labels, labels_poss
from data_utils.ioueval import iouEval
def sparse_tensor_to_pcd(coords, feats, sparse_resolution, shift=False):
pcd = o3d.geometry.PointCloud()
points = args.sparse_resolution * coords.numpy()
colors = [ color_map[int(label)] for label in feats.numpy() ]
colors = np.asarray(colors) / 255.
colors = colors[:, ::-1]
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
if shift:
shift_size = (pcd.get_max_bound()[1] - pcd.get_min_bound()[1]) * 1.5
points[:, 1] = points[:, 1] + shift_size
pcd.points = o3d.utility.Vector3dVector(points)
return pcd
def model_pipeline(model, data, args):
eval = iouEval(n_classes=len(content.keys()), ignore=0)
for iter_n, (x_coord, x_feats, x_label) in enumerate(tqdm(data)):
x, y = numpy_to_sparse_tensor(x_coord, x_feats, x_label)
if 'UNet' in args.sparse_model:
y = y[:, 0]
else:
y = torch.from_numpy(np.asarray(y))
y = y[:, 0]
h = model['model'](x)
z = model['classifier'](h)
y = y.cuda() if args.use_cuda else y
# accumulate accuracy
pred = z.max(dim=1)[1]
eval.addBatch(pred.long().cpu().numpy(), y.long().cpu().numpy())
#curr_acc = eval.getacc()
#miou, _ = eval.getIoU()
#print(f'\t- Acc: {curr_acc}\tmIoU: {miou}', end='\r')
if args.visualize_pcd:
pcd_gt = sparse_tensor_to_pcd(x.C[:, 1:].cpu(), y.cpu(), args.sparse_resolution, shift=True)
pcd_pred = sparse_tensor_to_pcd(x.C[:, 1:].cpu(), pred.cpu(), args.sparse_resolution)
o3d.visualization.draw_geometries([pcd_gt, pcd_pred])
acc = eval.getacc()
mean_iou, class_iou = eval.getIoU()
# return the epoch mean loss
return acc, mean_iou, class_iou
def run_inference(model, args):
data_val = data_loaders[args.dataset_name](split='validation', intensity_channel=args.use_intensity, resolution=args.sparse_resolution, args=args, pretraining=False)
# create the data loader for train and validation data
val_loader = torch.utils.data.DataLoader(
data_val,
batch_size=args.batch_size,
collate_fn=SparseCollation(args.sparse_resolution, inf),
shuffle=True,
)
# retrieve validation loss
model_acc, model_miou, model_class_iou = model_pipeline(model, val_loader, args)
print(f'\nModel Acc.: {model_acc}\tModel mIoU: {model_miou}\n\n- Per Class mIoU:')
for class_ in range(model_class_iou.shape[0]):
print(f'\t{labels[class_]}: {model_class_iou[class_].item()}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SparseSimCLR')
parser.add_argument('--dataset_name', type=str, default='SemanticKITTI',
help='Name of dataset (default: SemanticKITTI')
parser.add_argument('--data_dir', type=str, default='/data/3d',
help='Path to dataset (default: /home/ssd/3d')
parser.add_argument('--use-cuda', action='store_true', default=True,
help='using cuda (default: True')
parser.add_argument('--device-id', type=int, default=0,
help='GPU device id (default: 0')
parser.add_argument('--feature-size', type=int, default=128,
help='Feature output size (default: 128')
parser.add_argument('--sparse-resolution', type=float, default=0.05,
help='Sparse tensor resolution (default: 0.01')
parser.add_argument('--sparse_model', type=str, default='MinkUNet',
help='Sparse model to be used (default: MinkUNet')
parser.add_argument('--batch-size', type=int, default=1, metavar='N',
help='input inference batch-size')
parser.add_argument('--visualize-pcd', action='store_true', default=False,
help='visualize inference point cloud (default: False')
parser.add_argument('--use-intensity', action='store_true', default=True,
help='use intensity channel (default: False')
parser.add_argument('--load_path', type=str, default='None',
help='load pretrain models')
parser.add_argument('--best', type=str, default='epoch0',
help='best loss or accuracy over training (default: bestloss)')
args = parser.parse_args()
if args.use_cuda:
dtype = torch.cuda.FloatTensor
device = torch.device("cuda")
torch.cuda.set_device(0)
print('GPU')
else:
dtype = torch.FloatTensor
device = torch.device("cpu")
set_deterministic()
# define backbone architecture
resnet = get_model(args, dtype)
resnet.eval()
classifier = get_classifier_head(args, dtype)
classifier.eval()
model_filename = f'{args.best}_model_classifier_checkpoint.pt'
classifier_filename = f'{args.best}_model_head_classifier_checkpoint.pt'
print(model_filename, classifier_filename)
# load pretained weights
if os.path.isfile(f'{args.load_path}{model_filename}') and os.path.isfile(f'{args.load_path}{classifier_filename}'):
checkpoint = torch.load(f'{args.load_path}/{model_filename}')
resnet.load_state_dict(checkpoint['model'])
epoch = checkpoint['epoch']
checkpoint = torch.load(f'{args.load_path}/{classifier_filename}')
classifier.load_state_dict(checkpoint['model'])
print(f'Loaded model from', args.load_path)
else:
print('Trained model not found!')
import sys
sys.exit()
model = {'model': resnet, 'classifier': classifier}
run_inference(model, args)