forked from pkuxmq/Invertible-Image-Rescaling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
__init__.py
43 lines (38 loc) · 1.72 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
'''create dataset and dataloader'''
import logging
import torch
import torch.utils.data
def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
phase = dataset_opt['phase']
if phase == 'train':
if opt['dist']:
world_size = torch.distributed.get_world_size()
num_workers = dataset_opt['n_workers']
assert dataset_opt['batch_size'] % world_size == 0
batch_size = dataset_opt['batch_size'] // world_size
shuffle = False
else:
num_workers = dataset_opt['n_workers'] * len(opt['gpu_ids'])
batch_size = dataset_opt['batch_size']
shuffle = True
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, sampler=sampler, drop_last=True,
pin_memory=False)
else:
return torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=True)
def create_dataset(dataset_opt):
mode = dataset_opt['mode']
if mode == 'LQ':
from data.LQ_dataset import LQDataset as D
elif mode == 'LQGT':
from data.LQGT_dataset import LQGTDataset as D
# elif mode == 'LQGTseg_bg':
# from data.LQGT_seg_bg_dataset import LQGTSeg_BG_Dataset as D
else:
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
dataset = D(dataset_opt)
logger = logging.getLogger('base')
logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__,
dataset_opt['name']))
return dataset