-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_with_submitit_gqa_eval.py
170 lines (133 loc) · 5.6 KB
/
run_with_submitit_gqa_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
A script to run multinode training with submitit.
"""
import argparse
import copy
import itertools
import os
import uuid
from collections.abc import Iterable
from pathlib import Path
from typing import Dict
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import submitit
import scripts.eval_gqa as detection
def parse_args():
detection_parser = detection.get_args_parser()
parser = argparse.ArgumentParser("Submitit detection", parents=[detection_parser])
parser.add_argument("--partition", default=None, type=str, help="Partition where to submit")
parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
parser.add_argument("--nodes", default=4, type=int, help="Number of nodes to request")
parser.add_argument("--timeout", default=4300, type=int, help="Duration of the job")
parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")
parser.add_argument("--mail", default="", type=str, help="Email this user when the job finishes if specified")
return parser.parse_args()
def get_shared_folder(args) -> Path:
user = os.getenv("USER")
if Path("/checkpoint/").is_dir():
p = Path(f"/checkpoint/{user}/experiments")
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file(args):
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder(args)), exist_ok=True)
init_file = get_shared_folder(args) / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
def grid_parameters(grid: Dict):
"""
Yield all combinations of parameters in the grid (as a dict)
"""
grid_copy = dict(grid)
# Turn single value in an Iterable
for k in grid_copy:
if not isinstance(grid_copy[k], Iterable):
grid_copy[k] = [grid_copy[k]]
for p in itertools.product(*grid_copy.values()):
yield dict(zip(grid.keys(), p))
def sweep(executor: submitit.Executor, args: argparse.ArgumentParser, hyper_parameters: Iterable):
jobs = []
with executor.batch():
for grid_data in hyper_parameters:
tmp_args = copy.deepcopy(args)
tmp_args.dist_url = get_init_file(args).as_uri()
tmp_args.output_dir = args.job_dir
for k, v in grid_data.items():
assert hasattr(tmp_args, k)
setattr(tmp_args, k, v)
trainer = Trainer(tmp_args)
job = executor.submit(trainer)
jobs.append(job)
print("Sweep job ids:", [job.job_id for job in jobs])
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
socket_name = os.popen("ip r | grep default | awk '{print $5}'").read().strip("\n")
print("Setting GLOO and NCCL sockets IFNAME to: {}".format(socket_name))
os.environ["GLOO_SOCKET_IFNAME"] = socket_name
os.environ["MDETR_CPU_REDUCE"] = "1"
import scripts.eval_gqa as detection
self._setup_gpu_args()
detection.main(self.args)
def checkpoint(self):
import os
from pathlib import Path
import submitit
self.args.dist_url = get_init_file(self.args).as_uri()
checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
if os.path.exists(checkpoint_file):
self.args.resume = checkpoint_file
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
from pathlib import Path
import submitit
job_env = submitit.JobEnvironment()
self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def main():
args = parse_args()
if args.job_dir == "":
args.job_dir = get_shared_folder(args) / "%j"
# Note that the folder will depend on the job_id, to easily track experiments
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
# cluster setup is defined by environment variables
num_gpus_per_node = args.ngpus
nodes = args.nodes
partition = args.partition
timeout_min = args.timeout
kwargs = {}
if partition is not None:
kwargs["slurm_partition"] = partition
executor.update_parameters(
mem_gb=45 * num_gpus_per_node,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=10,
nodes=nodes,
timeout_min=timeout_min, # max is 60 * 72
# Below are cluster dependent parameters
slurm_signal_delay_s=120,
**kwargs,
)
executor.update_parameters(name="detectransformer")
if args.mail:
executor.update_parameters(additional_parameters={"mail-user": args.mail, "mail-type": "END"})
args.dist_url = get_init_file(args).as_uri()
args.output_dir = args.job_dir
trainer = Trainer(args)
job = executor.submit(trainer)
print("Submitted job_id:", job.job_id)
if __name__ == "__main__":
main()