-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvrd_test.py
210 lines (175 loc) · 9.34 KB
/
vrd_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# ------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License")
# ------------------------------------------------------------------------
# Modified from HoiTransformer (https://github.com/bbepoch/HoiTransformer)
# Copyright (c) Yang Li and Yucheng Tu. All Rights Reserved
# ------------------------------------------------------------------------
"""
This file implements the methods to produce predictions
on the validation and test sets and write them to files
using model checkpoints.
"""
import argparse
import datetime
import getpass
import json
import random
import os
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
from datasets import build_dataset
from engine import *
from models import build_model
from magic_numbers import *
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=999999999999, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm')
# Backbone.
parser.add_argument('--backbone', choices=['resnet50', 'resnet101', 'swin'], required=True,
help="Name of the convolutional backbone to use")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# Transformer.
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dec_layers_distance', default=6, type=int)
parser.add_argument('--dec_layers_occlusion', default=6, type=int)
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# Loss.
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# Matcher.
parser.add_argument('--relation_loss_coef', default=1, type=float)
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# Loss coefficients.
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.02, type=float,
help="Relative classification weight of the no-object class")
# Dataset parameters.
parser.add_argument('--dataset_file', default='two_point_five_vrd', type=str)
# Modify to your log path ******************************* !!!
exp_time = datetime.datetime.now().strftime('%Y%m%d%H%M')
work_dir = 'checkpoint/p_{}'.format(exp_time)
parser.add_argument('--output_dir', default=work_dir,
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--output_name', default='predictions', type=str)
parser.add_argument('--folder_name', default='', type=str)
return parser
def main(args):
print()
print("USE_SMALL_VALID_ANNOTATION_FILE: ", USE_SMALL_VALID_ANNOTATION_FILE)
print("USE_DEPTH_DURING_INFERENCE: ", USE_DEPTH_DURING_INFERENCE)
print("PREDICT_INTERSECTION_BOX: ", PREDICT_INTERSECTION_BOX)
print("CASCADE: ", CASCADE)
if CASCADE:
print("dec_layers | dec_layers_distance | dec_layers_occlusion: ")
print(args.dec_layers, " |", args.dec_layers_distance, " |", args.dec_layers_occlusion)
print()
device = torch.device(args.device)
model, criterion = build_model(args)
model.to(device)
model_without_ddp = model
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_valid = build_dataset(image_set='valid', args=args, test_scale=800)
dataset_test = build_dataset(image_set='test', args=args, test_scale=800)
sampler_valid = torch.utils.data.RandomSampler(dataset_valid)
sampler_test = torch.utils.data.RandomSampler(dataset_test)
# Construct validation data loader
batch_sampler_valid = torch.utils.data.BatchSampler(sampler_valid, args.batch_size, drop_last=False)
data_loader_valid = DataLoader(dataset_valid,
batch_sampler=batch_sampler_valid,
collate_fn=utils.collate_fn,
num_workers=args.num_workers)
batch_sampler_test = torch.utils.data.BatchSampler(sampler_test, args.batch_size, drop_last=False)
data_loader_test = DataLoader(dataset_test,
batch_sampler=batch_sampler_test,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
shuffle=False)
# Load model from checkpoint
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
print("Start Testing")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
# # Validation set
# with torch.no_grad():
# generate_evaluation_outputs(args, 'valid', model, criterion, data_loader_valid, optimizer,
# device, epoch, args.clip_max_norm)
# Test set
# Find out the name of the folder in which the predictions will be saved
start = args.resume.find('/')
end = args.resume.rfind('/')
folder_name = args.resume[start+1:end]
epoch_number_start_index = args.resume.find('epoch_')
epoch_number_end_index = args.resume.rfind('.pth')
epoch_number = args.resume[epoch_number_start_index+6:epoch_number_end_index]
if len(epoch_number) == 0:
epoch_number = None
if len(folder_name) == 0:
folder_name = None
if len(args.folder_name) > 0:
folder_name = args.folder_name
with torch.no_grad():
generate_evaluation_outputs(args, 'test', model, criterion, data_loader_test, optimizer,
device, epoch, args.clip_max_norm, folder_name=folder_name, epoch_number=epoch_number)
break
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Test time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('HOI Transformer test script', parents=[get_args_parser()])
args = parser.parse_args()
if VISUALIZE_ATTENTION_WEIGHTS:
args.batch_size = 1
# if args.output_dir:
# Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)