-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
398 lines (341 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# ------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License")
# ------------------------------------------------------------------------
# Modified from HoiTransformer (https://github.com/bbepoch/HoiTransformer)
# Copyright (c) Yang Li and Yucheng Tu. All Rights Reserved
# ------------------------------------------------------------------------
import argparse
import datetime
import getpass
import json
import random
import os
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
from datasets import build_dataset
from engine import *
from models import build_model
from magic_numbers import *
from torch.utils.tensorboard import SummaryWriter
from models.hoitr import OptimalTransport
# increase ulimit
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (rlimit[1], rlimit[1]))
def create_log_dir(checkpoint='checkpoint', log_path='~'):
return
base_dir = os.path.join(log_path, getpass.getuser())
exp_name = os.path.basename(os.path.abspath('.'))
log_dir = os.path.join(base_dir, exp_name)
print(log_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
if not os.path.exists(checkpoint):
cmd = "ln -s {} {}".format(log_dir, checkpoint)
os.system(cmd)
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=250, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Backbone.
parser.add_argument('--backbone', choices=['resnet50', 'resnet101', 'swin'],
required=True,
help="Name of the convolutional backbone to use")
parser.add_argument('--position_embedding', default='sine', type=str,
choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# Transformer.
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dec_layers_distance', default=6, type=int)
parser.add_argument('--dec_layers_occlusion', default=6, type=int)
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# Loss.
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# Matcher.
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# Loss coefficients.
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--relation_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.02, type=float,
help="Relative classification weight of the no-object class")
# Dataset parameters.
parser.add_argument('--dataset_file',
choices=['hico', 'vcoco', 'hoia', 'two_point_five_vrd'],
required=True)
# Modify to your log path ******************************* !!!
exp_time = datetime.datetime.now().strftime('%Y%m%d%H%M')
create_log_dir(checkpoint='checkpoint', log_path='~/log_path')
work_dir = 'checkpoint/p_{}'.format(exp_time)
parser.add_argument('--output_dir', default=work_dir,
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=0, type=int)
# Distributed training parameters.
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--swin_model', default='base_cascade',
choices=['base_cascade',
'tiny_cascade',
'tiny_maskrcnn',
'small_cascade',
'small_maskrcnn'])
parser.add_argument('--manual_lr_change', type=float)
parser.add_argument('--manual_lr_backbone_change', type=float)
# Experiment name
parser.add_argument('--experiment_name', default='')
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
print()
print("GPU_MEMORY_PRESSURE_TEST ", GPU_MEMORY_PRESSURE_TEST)
print("USE_SMALL_ANNOTATION_FILE: ", USE_SMALL_ANNOTATION_FILE)
print("USE_OPTIMAL_TRANSPORT: ", USE_OPTIMAL_TRANSPORT)
print("USE_DEPTH_DURING_TRAINING: ", USE_DEPTH_DURING_TRAINING)
print("PREDICT_INTERSECTION_BOX: ", PREDICT_INTERSECTION_BOX)
print("USE_RAW_DISTANCE_LABELS: ", USE_RAW_DISTANCE_LABELS)
print("USE_RAW_OCCLUSION_LABELS: ", USE_RAW_OCCLUSION_LABELS)
print("IMPROVE_INTERMEDIATE_LAYERS: ", IMPROVE_INTERMEDIATE_LAYERS)
print("CASCADE: ", CASCADE)
if CASCADE:
print("dec_layers | dec_layers_distance | dec_layers_occlusion: ")
print(args.dec_layers, " |", args.dec_layers_distance, " |", args.dec_layers_occlusion)
print("eos_coef:", args.eos_coef)
print()
# Create summary writer for tensorboard
# It will recorde stats such as losses and lr to tensorboard
writer = SummaryWriter(args.experiment_name)
# (For debugging purpose) Reduce batch size to 1
# when debugging on a single image
if TRAIN_ON_ONE_IMAGE:
args.batch_size = 1
# Fix the seed for reproducibility.
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Build model, hungarian matcher, and optimal transport
model, criterion = build_model(args)
model.to(device)
optimal_transport = OptimalTransport(args)
# Distributed set up
model_without_ddp = model
find_unused_parameters = args.backbone == 'swin'
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.gpu],
find_unused_parameters=find_unused_parameters)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
# Build optimizer and learning rate scheduler
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
if CYCLIC_SCHEDULER:
lr_scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer,
base_lr=CYCLIC_BASE_LR,
max_lr=CYCLIC_MAX_LR,
step_size_up = CYCLIC_STEP_SIZE_UP,
step_size_down=CYCLIC_STEP_SIZE_DOWN,
mode='triangular2',
cycle_momentum=False)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# Build datasets
dataset_train = build_dataset(image_set='train', args=args)
dataset_valid = build_dataset(image_set='valid', args=args, test_scale=800)
#dataset_test = build_dataset(image_set='test', args=args, test_scale=800)
# Build sampler and batch sampler
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_valid = DistributedSampler(dataset_valid)
#sampler_test = DistributedSampler(dataset_test)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_valid = torch.utils.data.RandomSampler(dataset_valid)
#sampler_test = torch.utils.data.RandomSampler(dataset_test)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train,
args.batch_size,
drop_last=True)
# This partially addresses the EOF Error
torch.multiprocessing.set_sharing_strategy(sharing_strategy)
def set_worker_sharing_strategy(worker_id: int) -> None:
torch.multiprocessing.set_sharing_strategy(sharing_strategy)
data_loader_train = DataLoader(dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
worker_init_fn=set_worker_sharing_strategy,
persistent_workers=(PERSISTENT_WORKERS and (args.num_workers > 0)))
# (For debugging purpose) create a sequential sampler
sequential_data_loader_train = DataLoader(dataset_train,
args.batch_size,
collate_fn=utils.collate_fn,
num_workers=args.num_workers)
# Construct batch samplers and data loaders for validation and test sets
batch_sampler_valid = torch.utils.data.BatchSampler(sampler_valid,
batch_size_validation,
drop_last=False)
data_loader_valid = DataLoader(dataset_valid,
batch_sampler=batch_sampler_valid,
collate_fn=utils.collate_fn,
num_workers=num_workers_validation,
worker_init_fn=set_worker_sharing_strategy)
# Load from pretrained DETR model.
if args.num_queries == 100 and args.enc_layers == 6 and args.dec_layers == 6:
assert args.backbone in ['resnet50', 'resnet101', 'swin'], args.backbone
if args.backbone == 'resnet50':
pretrain_model = './data/detr_coco/detr-r50-e632da11.pth'
elif args.backbone == 'resnet101':
pretrain_model = './data/detr_coco/detr-r101-2c7b67e5.pth'
else:
pretrain_model = None
else:
pretrain_model = None
if pretrain_model is not None:
pretrain_dict = torch.load(pretrain_model, map_location='cpu')['model']
my_model_dict = model_without_ddp.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in my_model_dict}
my_model_dict.update(pretrain_dict)
model_without_ddp.load_state_dict(my_model_dict)
output_dir = Path(args.output_dir)
# Resume from checkpoint
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if 'optimizer' in checkpoint \
and 'lr_scheduler' in checkpoint \
and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
# Reset lr_scheduler if lr and backbone lr will be manually changed.
# For example, if I resume using checkpoint of epoch 29,
# manually change lr, and set lr_drop to 35,
# then epoch 30--64 will use the manually changed lr,
# and epoch 65 will use the lr dropped by lr_scheduler
# Note: these lines of code might lead to unexpected behavior of cyclic lr scheduler.
if not args.manual_lr_change and not args.manual_lr_backbone_change:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.manual_lr_change:
optimizer.param_groups[0]['lr'] = args.manual_lr_change
print('Changed lr to', args.manual_lr_change)
if args.manual_lr_backbone_change:
optimizer.param_groups[1]['lr'] = args.manual_lr_backbone_change
print('Changed lr_backbone to', args.manual_lr_backbone_change)
############################################################################
# (For debugging purpose)
# Set data loader for the training set as the sequential one
if USE_SEQUENTIAL_LOADER:
data_loader_train = sequential_data_loader_train
############################################################################
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
if epoch == 0 and not USE_SMALL_VALID_ANNOTATION_FILE and not USE_SMALL_ANNOTATION_FILE and not GPU_MEMORY_PRESSURE_TEST:
# Validate before training
print("Validate before training:")
with torch.no_grad():
validate(args, writer, 'valid', model, criterion, data_loader_valid, optimizer,
device, -1, args.clip_max_norm)
# Train
train_stats = train_one_epoch(args, writer, model,
criterion, optimal_transport,
data_loader_train,
optimizer, device, epoch,
args.clip_max_norm,
use_optimal_transport=USE_OPTIMAL_TRANSPORT,
lr_scheduler = lr_scheduler)
lr_scheduler.step()
# Validate
with torch.no_grad():
validate(args, writer, 'valid', model, criterion, data_loader_valid, optimizer,
device, epoch, args.clip_max_norm)
# Test
# with torch.no_grad():
# validate(args, writer, 'test', model, criterion, data_loader_test, optimizer,
# device, epoch, args.clip_max_norm)
# Save Checkpoint
if args.output_dir:
checkpoint_name = 'checkpoint_epoch_' + str(epoch) + '.pth'
checkpoint_paths = [output_dir / checkpoint_name]
# extra checkpoint before LR drop and every 10 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
if (epoch + 1) > args.lr_drop and (epoch + 1) % 10 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
if BACK_PROP_SINKHORN_COST:
log_stats = str(log_stats.items())
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('HOI Transformer training script',
parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)