-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkroSBL2.asv
218 lines (166 loc) · 5.96 KB
/
kroSBL2.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
function [errorl,time,mu_x_est,gammare,H_re] = kroSBL2(noise_var,Res1,numItr,H,H_p1,H_p2,A1,A2,y,K2,irs_pattern,A_irs_a,A_irs_d,H1,H2,SNR,thres,overheadi)
time = 0;
A2_ori = A2; % a copy of the dictionary
global thres_inner;
gamma1 = 1*ones(Res1,1); % prior on the gamma1
gamma2 = 1*ones(Res1,1); % prior on the gamma2
gamma3 = 1*ones(Res1,1); % prior on the gamma3
gamma = kron(kron(gamma1,gamma2),gamma3);
mu_x = 1*ones(Res1^3,1);% initialization
keep_list = 1:Res1^3;
keep_list1 = 1:Res1;
keep_list2 = 1:Res1;% absolute position
keep_list3 = 1:Res1;% absolute position
norm1 = 1;
itr2 = 1;
r_absolute = 1e-4;
if overheadi > 10
if SNR > 13 && SNR < 25
r1 = 1e-2;
r2 = 1e-2;
r3 = 1e-2;
elseif SNR >= 25
r1 = 1e-2;
r2 = 1e-2;
r3 = 1e-2;
else
r1 = 1e-2;
r2 = 1e-2;
r3 = 1e-2;
end
else
if SNR > 13 && SNR < 25
r1 = 1e-2;
r2 = 1e-2;
r3 = 1e-2;
elseif SNR >= 25
r1 = 1e-2;
r2 = 1e-2;
r3 = 1e-2;
else
r1 = 1e-2;
r2 = 1e-2;
r3 = 1e-2;
end
end
while(itr2 < numItr + 1 && norm1 > thres) % do the iteration
itr2
tic;
gammal = zeros(Res1^3,1);
gammal(keep_list) = gamma;
gamma_old = gammal;
mu_x_t = zeros(Res1^3,1);
mu_x_t(keep_list) = mu_x;
mu_x_old = mu_x_t;
% Prune weights
if min(abs(gamma1)) < r_absolute || min(abs(gamma2)) < r_absolute || min(abs(gamma3)) < r_absolute || min(abs(gamma1)) < r1*max(abs(gamma1)) || min(abs(gamma2)) < r2*max(abs(gamma2)) || min(abs(gamma3)) < r3*max(abs(gamma3))
% if the first condition happens, it means that some block has to
% be zero, if the second happens, it means that some entries in
% each block should be zero.
l1 = length(gamma1);
l2 = length(gamma2);
l3 = length(gamma3);
index1_dele = find(gamma1 < r1*max(abs(gamma1)));
index1_sub = find(gamma1 < r_absolute);
index1_dele = sort(unique([index1_dele;index1_sub]));
index1 = 1:l1;
index1(index1_dele) = [];% should keep relative position
index2_dele = find(gamma2 < r2*max(abs(gamma2)));
index2_sub = find(gamma2 < r_absolute);
index2_dele = sort(unique([index2_dele;index2_sub]));
index2 = 1:l2;
index2(index2_dele) = [];% should keep relative position
index3_dele = find(gamma3 < r3*max(abs(gamma3)));
index3_sub = find(gamma3 < r_absolute);
index3_dele = sort(unique([index3_dele;index3_sub]));
index3 = 1:l3;
index3(index3_dele) = [];% should keep relative position
index = [];%zeros(l1*l2,1);
for i =1:length(index1)
for j = 1:length(index2)
for k = 1:length(index3)
index = [index;(((index1(i)-1)*l2+index2(j)-1)*l3+index3(k))];
end
end
end
H = H(:,index);
H_p1 = H_p1(:,index1);
H_p2 = H_p2(:,index2);
A2 = A2(:,index3);
keep_list = keep_list(index);
keep_list1 = keep_list1(index1);
keep_list2 = keep_list2(index2);
keep_list3 = keep_list3(index3);
% prune gamma and corresponding entries in Sigma and mu
gamma1 = gamma1(index1);
gamma2 = gamma2(index2);
gamma3 = gamma3(index3);
end
% update the posterior mean and variance
% compute the posterior
[mu_x,Sigma_x] = posterior_compute2(noise_var,gamma1,gamma2,gamma3,H_p1,H_p2,A2,H,y);
Lambda = real(diag(Sigma_x)) + abs(mu_x).^2;
l1 = size(gamma1,1);
l2 = size(gamma2,1);
l3 = size(gamma3,1);
normi1 = 1;
while(normi1 > thres_inner)
gamma_old_inner = kron(kron(gamma1,gamma2),gamma3);
for i = 1:l1 % update gamma1
temp = 0;
for j = 1:l2
for k = 1:l3
idx_inner = ((i-1)* l2 + j-1)*l3+k;
temp = temp + Lambda(idx_inner)/(gamma2(j)*gamma3(k)*l2*l3);
end
end
gamma1(i)= temp;
end
% gamma1 = gamma1/norm(gamma1);
for j = 1:l2 % update gamma2
temp = 0;
for i = 1:l1
for k = 1:l3
idx_inner = ((i-1)* l2 + j-1)*l3+k;
temp = temp + Lambda(idx_inner)/(gamma1(i)*gamma3(k)*l1*l3);
end
end
gamma2(j)= temp;
end
gamma2 = gamma2/norm(gamma2);
for k = 1:l3 % update gamma3
temp = 0;
for i = 1:l1
for j = 1:l2
idx_inner = ((i-1)* l2 + j-1)*l3+k;
temp = temp + Lambda(idx_inner)/(gamma1(i)*gamma2(j)*l1*l2);
end
end
gamma3(k)= temp;
end
gamma3 = gamma3/norm(gamma3);
normi1 = norm(kron(kron(gamma1,gamma2),gamma3) - gamma_old_inner);
end
time = time + toc;
% re-estimate
[mu_x,~] = posterior_compute(noise_var,gamma1,gamma2,gamma3,H_p1,H_p2,A2,H,y);
mu_x_est = zeros(Res1^3,1);
mu_x_est(keep_list) = mu_x;
gammare = zeros(Res1^3,1);
gamma = kron(gamma1,kron(gamma2,gamma3));
gammare(keep_list) = gamma;
norm1 = norm(mu_x_est - mu_x_old)/norm(mu_x_old)
% computing the error for each IRS pattern and averaging them all
for i = 1:K2
Htt = irs_pattern(:,i).'*kr(A_irs_a.',A_irs_d').';
Ht(:,:,i) = Htt(:,1:Res1);
H_re(:,:,i) = kron(kron(Ht(:,:,i),conj(A1)),A2_ori)*mu_x_est;
Htrue(:,:,i) = vec(H2*diag(irs_pattern(:,i))*H1);
nmse(itr2,i) = norm(H_re(:,:,i) - Htrue(:,:,i),'fro')/norm(Htrue(:,:,i),'fro');
end
error = sum(nmse(itr2,:))/K2
errorl(itr2) = error;
itr2 = itr2 + 1;
end
errorl = errorl(end);
end