-
Notifications
You must be signed in to change notification settings - Fork 5
/
evaluate.py
executable file
·334 lines (274 loc) · 12 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import argparse
import math
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
from soe import *
from loading_pointclouds import *
from sklearn.neighbors import NearestNeighbors
from sklearn.neighbors import KDTree
os.environ["CUDA_VISIBLE_DEVICES"] = str(0)
#params
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 1]')
parser.add_argument('--positives_per_query', type=int, default=2, help='Number of potential positives in each training tuple [default: 2]')
parser.add_argument('--negatives_per_query', type=int, default=8, help='Number of definite negatives in each training tuple [default: 20]')
parser.add_argument('--batch_num_queries', type=int, default=1, help='Batch Size during training [default: 1]')
parser.add_argument('--dimension', type=int, default=256)
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
parser.add_argument('--model_file', default='model19_18001.ckpt', help='Log dir [default: log]')
parser.add_argument('--dataset', default='oxford', help='Log dir [default: log]')
parser.add_argument('--logdir', default='./tf_log/baseline_network/', help='Log dir [default: log]')
FLAGS = parser.parse_args()
RESULTS_FOLDER="results/"
#BATCH_SIZE = FLAGS.batch_size
BATCH_NUM_QUERIES = FLAGS.batch_num_queries
EVAL_BATCH_SIZE = 1
NUM_POINTS = 4096
POSITIVES_PER_QUERY= FLAGS.positives_per_query
NEGATIVES_PER_QUERY= FLAGS.negatives_per_query
GPU_INDEX = FLAGS.gpu
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
model_file = FLAGS.model_file
dataset = FLAGS.dataset
LOG_DIR = FLAGS.logdir
if not os.path.exists(RESULTS_FOLDER): os.mkdir(RESULTS_FOLDER)
NUMBER_NEIBORS = 25
DATABASE_FILE= '/home/xiayan/generating_queries/'+ dataset +'_evaluation_database.pickle'
QUERY_FILE= '/home/xiayan/generating_queries/' + dataset + '_evaluation_query.pickle'
output_file= RESULTS_FOLDER +'baseline_results_'+dataset+'_'+model_file+'.txt'
# output_file= RESULTS_FOLDER +'refinement_results_'+dataset+'_'+model_file+'.txt'
DATABASE_SETS= get_sets_dict(DATABASE_FILE)
QUERY_SETS= get_sets_dict(QUERY_FILE)
global DATABASE_VECTORS
DATABASE_VECTORS=[]
global QUERY_VECTORS
QUERY_VECTORS=[]
global array
array=[]
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_NUM_QUERIES,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def evaluate():
global DATABASE_VECTORS
global QUERY_VECTORS
global array
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
print("In Graph")
query= placeholder_inputs(BATCH_NUM_QUERIES, 1, NUM_POINTS)
positives= placeholder_inputs(BATCH_NUM_QUERIES, POSITIVES_PER_QUERY, NUM_POINTS)
negatives= placeholder_inputs(BATCH_NUM_QUERIES, NEGATIVES_PER_QUERY, NUM_POINTS)
eval_queries= placeholder_inputs(EVAL_BATCH_SIZE, 1, NUM_POINTS)
is_training_pl = tf.placeholder(tf.bool, shape=())
print(is_training_pl)
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
with tf.variable_scope("query_triplets") as scope:
vecs= tf.concat([query, positives, negatives],1)
print(vecs)
out_vecs = forward(vecs, is_training_pl, bn_decay=bn_decay)
print(out_vecs)
q_vec, pos_vecs, neg_vecs= tf.split(out_vecs, [1,POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY],1)
print(q_vec)
print(pos_vecs)
print(neg_vecs)
saver = tf.train.Saver()
# Create a session
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
config = tf.ConfigProto(gpu_options=gpu_options)
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
saver.restore(sess, os.path.join(LOG_DIR, model_file))
print("Model restored.")
ops = {'query': query,
'positives': positives,
'negatives': negatives,
'is_training_pl': is_training_pl,
'eval_queries': eval_queries,
'q_vec':q_vec,
'pos_vecs': pos_vecs,
'neg_vecs': neg_vecs}
recall= np.zeros(NUMBER_NEIBORS)
count=0
similarity=[]
one_percent_recall=[]
#print('len(DATABASE_SETS)', len(DATABASE_SETS))
#print('len(QUERY_SETS)', len(QUERY_SETS))
for i in range(len(DATABASE_SETS)):
DATABASE_VECTORS.append(get_latent_vectors(sess, ops, DATABASE_SETS[i]))
for j in range(len(QUERY_SETS)):
#print('QUERY_SETS[j]', QUERY_SETS[j])
QUERY_VECTORS.append(get_latent_vectors(sess, ops, QUERY_SETS[j]))
for m in range(len(QUERY_SETS)):
for n in range(len(QUERY_SETS)):
if(m==n):
continue
pair_recall, pair_similarity, pair_opr = get_recall(sess, ops, m, n)
recall+=np.array(pair_recall)
count+=1
one_percent_recall.append(pair_opr)
for x in pair_similarity:
similarity.append(x)
print()
ave_recall=recall/count
print(ave_recall)
#print(similarity)
average_similarity= np.mean(similarity)
print(average_similarity)
ave_one_percent_recall= np.mean(one_percent_recall)
print(ave_one_percent_recall)
#filename=RESULTS_FOLDER +'average_recall_oxford_netmax_sg(finetune_conv5).txt'
with open(output_file, "w") as output:
output.write("Average Recall @N:\n")
output.write(str(ave_recall))
output.write("\n\n")
output.write("Average Similarity:\n")
output.write(str(average_similarity))
output.write("\n\n")
output.write("Average Top 1% Recall:\n")
output.write(str(ave_one_percent_recall))
def get_latent_vectors(sess, ops, dict_to_process):
is_training=False
train_file_idxs = np.arange(0, len(dict_to_process.keys()))
#print(len(train_file_idxs))
batch_num= BATCH_NUM_QUERIES*(1+POSITIVES_PER_QUERY+NEGATIVES_PER_QUERY)
q_output = []
for q_index in range(len(train_file_idxs)//batch_num):
file_indices=train_file_idxs[q_index*batch_num:(q_index+1)*(batch_num)]
file_names=[]
for index in file_indices:
file_names.append(dict_to_process[index]["query"])
#print(file_names)
queries=load_pc_files(file_names)
#queries=rotate_point_cloud(queries)
#queries=noising_point_cloud(queries)
# queries= np.expand_dims(queries,axis=1)
q1=queries[0:BATCH_NUM_QUERIES]
q1=np.expand_dims(q1,axis=1)
#print(q1.shape)
q2=queries[BATCH_NUM_QUERIES:BATCH_NUM_QUERIES*(POSITIVES_PER_QUERY+1)]
q2=np.reshape(q2,(BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,3))
q3=queries[BATCH_NUM_QUERIES*(POSITIVES_PER_QUERY+1):BATCH_NUM_QUERIES*(NEGATIVES_PER_QUERY+POSITIVES_PER_QUERY+1)]
q3=np.reshape(q3,(BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,3))
feed_dict={ops['query']:q1, ops['positives']:q2, ops['negatives']:q3, ops['is_training_pl']:is_training}
o1, o2, o3 =sess.run([ops['q_vec'], ops['pos_vecs'], ops['neg_vecs']], feed_dict=feed_dict)
# if(q_index==2):
# #print(file_names)
# #weights = np.reshape(weights,[-1,NUM_POINTS,1])
# weights = np.array(weights)
o1=np.reshape(o1,(-1,o1.shape[-1]))
o2=np.reshape(o2,(-1,o2.shape[-1]))
o3=np.reshape(o3,(-1,o3.shape[-1]))
out=np.vstack((o1,o2,o3))
q_output.append(out)
q_output=np.array(q_output)
if(len(q_output)!=0):
q_output=q_output.reshape(-1,q_output.shape[-1])
#print(q_output.shape)
#handle edge case
for q_index in range((len(train_file_idxs)//batch_num*batch_num),len(dict_to_process.keys())):
index=train_file_idxs[q_index]
queries=load_pc_files([dict_to_process[index]["query"]])
#queries=jitter_point_cloud(queries)
queries= np.expand_dims(queries,axis=1)
#print(query.shape)
#exit()
fake_queries=np.zeros((BATCH_NUM_QUERIES-1,1,NUM_POINTS,3))
fake_pos=np.zeros((BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,3))
fake_neg=np.zeros((BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,3))
q=np.vstack((queries,fake_queries))
#print(q.shape)
feed_dict={ops['query']:q, ops['positives']:fake_pos, ops['negatives']:fake_neg, ops['is_training_pl']:is_training}
output=sess.run(ops['q_vec'], feed_dict=feed_dict)
#print(output.shape)
output=output[0]
output=np.squeeze(output)
if (q_output.shape[0]!=0):
q_output=np.vstack((q_output,output))
else:
q_output=output
#q_output=np.array(q_output)
#q_output=q_output.reshape(-1,q_output.shape[-1])
print(q_output.shape)
return q_output
def get_recall(sess, ops, m, n):
global DATABASE_VECTORS
global QUERY_VECTORS
global array
database_output= DATABASE_VECTORS[m]
queries_output= QUERY_VECTORS[n]
print('database_output', len(database_output))
print('queries_output', len(queries_output))
database_nbrs = KDTree(database_output)
num_neighbors=NUMBER_NEIBORS
recall=[0]*num_neighbors
top1_similarity_score=[]
one_percent_retrieved=0
threshold=max(int(round(len(database_output)/100.0)),1)
num_evaluated=0
# print(m,n)
#print('Query sets:', QUERY_SETS)
for i in range(len(queries_output)):
true_neighbors= QUERY_SETS[n][i][m]
if(len(true_neighbors)==0):
continue
num_evaluated+=1
distances, indices = database_nbrs.query(np.array([queries_output[i]]),k=num_neighbors)
for j in range(len(indices[0])):
if indices[0][j] in true_neighbors:
if(j==0):
similarity= np.dot(queries_output[i],database_output[indices[0][j]])
top1_similarity_score.append(similarity)
recall[j]+=1
break
if (j==(len(indices[0])-1)):
array.append(n)
array.append(i)
array.append(m)
if len(list(set(indices[0][0:threshold]).intersection(set(true_neighbors))))>0:
one_percent_retrieved+=1
one_percent_recall=(one_percent_retrieved/float(num_evaluated))*100
recall=(np.cumsum(recall)/float(num_evaluated))*100
print(recall)
print(np.mean(top1_similarity_score))
print('one_percent_recall',one_percent_recall)
return recall, top1_similarity_score, one_percent_recall
def get_similarity(sess, ops, m, n):
global DATABASE_VECTORS
global QUERY_VECTORS
database_output= DATABASE_VECTORS[m]
queries_output= QUERY_VECTORS[n]
threshold= len(queries_output)
print(len(queries_output))
database_nbrs = KDTree(database_output)
similarity=[]
for i in range(len(queries_output)):
distances, indices = database_nbrs.query(np.array([queries_output[i]]),k=1)
for j in range(len(indices[0])):
q_sim= np.dot(q_output[i], database_output[indices[0][j]])
similarity.append(q_sim)
average_similarity=np.mean(similarity)
print(average_similarity)
return average_similarity
if __name__ == "__main__":
evaluate()