-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_val_one_gpu.py
396 lines (362 loc) · 13.5 KB
/
train_val_one_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# %%
import os
import random
import monai
from os import listdir, makedirs
from os.path import join, exists, isfile, isdir, basename
from glob import glob
from tqdm import tqdm, trange
from copy import deepcopy
from time import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from datetime import datetime
import pickle
from pathlib import Path
from segment_anything.modeling import MaskDecoder, PromptEncoder, TwoWayTransformer
from dataset_cache import NpyDatasetCache, NpyDataset
import cv2
import torch.nn.functional as F
from swin.Transformer.SwinTransformer.swin_lzh import MySwinFormer
from matplotlib import pyplot as plt
import argparse
# %%
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--tr_npy_path',
type=str,
default='data/npy',
help='Path to training npy files; two subfolders: gts and imgs')
parser.add_argument('-task_name',
type=str,
default='MedSAM-Lite-RepViT')
parser.add_argument(
"-pretrained_checkpoint",
type=str,
default="lite_medsam.pth",
help="Path to the pretrained Lite-MedSAM checkpoint."
)
parser.add_argument(
"-resume",
type=str,
default='workdir/medsam_lite_latest.pth',
help="Path to the checkpoint to continue training."
)
parser.add_argument(
"-work_dir",
type=str,
default="./workdir/",
help="Path to the working directory where checkpoints and logs will be saved."
)
parser.add_argument('--data_aug',
action='store_true',
default=False,
help='use data augmentation during training')
parser.add_argument(
"-num_epochs",
type=int,
default=100,
help="Number of epochs to train."
)
parser.add_argument(
"-batch_size",
type=int,
default=4,
help="Batch size."
)
parser.add_argument(
"-num_workers",
type=int,
default=4,
help="Number of workers for dataloader."
)
parser.add_argument(
"-device",
type=str,
efault="cuda:0",
help="Device to train on."
)
parser.add_argument(
'-weight_decay',
type=float,
default=0.01,
help='weight decay (default: 0.01)'
)
parser.add_argument(
'-lr',
type=float,
default=0.0001,
metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument(
"-bbox_shift",
type=int,
default=5,
help="Perturbation to bounding box coordinates during training."
)
parser.add_argument(
"-weight_decay",
type=float,
default=0.01,
help="Weight decay."
)
parser.add_argument(
"-iou_loss_weight",
type=float,
default=1.0,
help="Weight of IoU loss."
)
parser.add_argument(
"-seg_loss_weight",
type=float,
default=1.0,
help="Weight of segmentation loss."
)
parser.add_argument(
"-ce_loss_weight",
type=float,
default=1.0,
help="Weight of cross entropy loss."
)
args = parser.parse_args()
# %%
work_dir = args.work_dir
tr_npy_path = args.tr_npy_path
medsam_lite_checkpoint = args.pretrained_checkpoint
num_epochs = args.num_epochs
batch_size = args.batch_size
num_workers = args.num_workers
device = args.device
bbox_shift = args.bbox_shift
lr = args.lr
weight_decay = args.weight_decay
iou_loss_weight = args.iou_loss_weight
seg_loss_weight = args.seg_loss_weight
ce_loss_weight = args.ce_loss_weight
checkpoint = args.resume
makedirs(work_dir, exist_ok=True)
# %%
torch.cuda.empty_cache()
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.45])], axis=0)
else:
color = np.array([251/255, 252/255, 30/255, 0.45])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='blue', facecolor=(0,0,0,0), lw=2))
def cal_iou(result, reference):
intersection = torch.count_nonzero(torch.logical_and(result, reference), dim=[i for i in range(1, result.ndim)])
union = torch.count_nonzero(torch.logical_or(result, reference), dim=[i for i in range(1, result.ndim)])
iou = intersection.float() / union.float()
return iou.unsqueeze(1)
class MedSAM_Lite(nn.Module):
def __init__(self,
image_encoder,
mask_decoder,
prompt_encoder
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
def forward(self, image, boxes):
image_embedding = self.image_encoder(image)[-1] # (B, 256, 64, 64)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=boxes,
masks=None,
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=image_embedding, # (B, 256, 64, 64)
image_pe=self.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
) # (B, 1, 256, 256)
return low_res_masks, iou_predictions
@torch.no_grad()
def postprocess_masks(self, masks, new_size, original_size):
"""
Do cropping and resizing
"""
# Crop
masks = masks[:, :, :new_size[0], :new_size[1]]
# Resize
masks = F.interpolate(
masks,
size=(original_size[0], original_size[1]),
mode="bilinear",
align_corners=False,
)
return masks
medsam_lite_image_encoder = MySwinFormer(pretrain_image_size=(256,256),
patch_size=(1, 1), in_chans=3, embed_dim=64,
norm_layer=nn.LayerNorm,
patch_norm=True,
if_absolute_embedding=True).cuda()
medsam_lite_prompt_encoder = PromptEncoder(
embed_dim=256,
image_embedding_size=(64, 64),
input_image_size=(256, 256),
mask_in_chans=16
)
medsam_lite_mask_decoder = MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=256,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=256,
iou_head_depth=3,
iou_head_hidden_dim=256,
)
medsam_lite_model = MedSAM_Lite(
image_encoder=medsam_lite_image_encoder,
mask_decoder=medsam_lite_mask_decoder,
prompt_encoder=medsam_lite_prompt_encoder
)
if medsam_lite_checkpoint is not None:
if isfile(medsam_lite_checkpoint):
print(f"Finetuning with pretrained weights {medsam_lite_checkpoint}")
medsam_lite_ckpt = torch.load(
medsam_lite_checkpoint,
map_location="cpu"
)
medsam_lite_model.load_state_dict(medsam_lite_ckpt, strict=True)
else:
print(f"Pretained weights {medsam_lite_checkpoint} not found, training from scratch")
medsam_lite_model = medsam_lite_model.to(device)
medsam_lite_model.train()
# %%
print(f"MedSAM Lite size: {sum(p.numel() for p in medsam_lite_model.parameters())}")
# %%
optimizer = optim.AdamW(
medsam_lite_model.parameters(),
lr=lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=weight_decay,
)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=0.9,
patience=5,
cooldown=0
)
seg_loss = monai.losses.DiceLoss(sigmoid=True, squared_pred=True, reduction='mean')
ce_loss = nn.BCEWithLogitsLoss(reduction='mean')
iou_loss = nn.MSELoss(reduction='mean')
# %%
# train_dataset = NpyDataset(data_root=data_root, data_aug=True)
dataset_cache = NpyDatasetCache(img_data_root=str(Path(args.tr_npy_path) / "imgs"), gt_data_root=str(Path(args.tr_npy_path) / "gts"))
tr_cache, val_cache = dataset_cache.divide()
tr_dataset = NpyDataset(tr_cache, data_aug=args.data_aug)
val_dataset = NpyDataset(val_cache, data_aug=args.data_aug)
train_loader = DataLoader(tr_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)
if checkpoint and isfile(checkpoint):
print(f"Resuming from checkpoint {checkpoint}")
checkpoint = torch.load(checkpoint)
medsam_lite_model.load_state_dict(checkpoint["model"], strict=True)
optimizer.load_state_dict(checkpoint["optimizer"])
start_epoch = checkpoint["epoch"]
best_loss = checkpoint["loss"]
print(f"Loaded checkpoint from epoch {start_epoch}")
else:
start_epoch = 0
best_loss = 1e10
# %%
train_losses = []
val_losses = []
epoch_times = []
for epoch in range(start_epoch + 1, num_epochs):
epoch_train_loss = [1e10 for _ in range(len(train_loader))]
epoch_val_loss = [1e10 for _ in range(len(val_loader))]
epoch_start_time = time()
pbar = tqdm(train_loader)
for step, batch in enumerate(pbar):
image = batch["image"]
gt2D = batch["gt2D"]
boxes = batch["bboxes"]
optimizer.zero_grad()
image, gt2D, boxes = image.to(device), gt2D.to(device), boxes.to(device)
logits_pred, iou_pred = medsam_lite_model(image, boxes)
l_seg = seg_loss(logits_pred, gt2D)
l_ce = ce_loss(logits_pred, gt2D.float())
#mask_loss = l_seg + l_ce
mask_loss = seg_loss_weight * l_seg + ce_loss_weight * l_ce
iou_gt = cal_iou(torch.sigmoid(logits_pred) > 0.5, gt2D.bool())
l_iou = iou_loss(iou_pred, iou_gt)
#loss = mask_loss + l_iou
loss = mask_loss + iou_loss_weight * l_iou
epoch_train_loss[step] = loss.item()
loss.backward()
optimizer.step()
optimizer.zero_grad()
pbar.set_description(f"Training Epoch {epoch} at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, loss: {loss.item():.4f}")
medsam_lite_model.eval()
pbar = tqdm(val_loader)
for step, batch in enumerate(pbar):
with torch.no_grad():
image = batch["image"]
gt2D = batch["gt2D"]
boxes = batch["bboxes"]
image, gt2D, boxes = image.to(device), gt2D.to(device), boxes.to(device)
logits_pred, iou_pred = medsam_lite_model(image, boxes)
l_seg = seg_loss(logits_pred, gt2D)
l_ce = ce_loss(logits_pred, gt2D.float())
mask_loss = l_seg + l_ce
iou_gt = cal_iou(torch.sigmoid(logits_pred) > 0.5, gt2D.bool())
l_iou = iou_loss(iou_pred, iou_gt)
loss = mask_loss + l_iou
epoch_val_loss[step] = loss.item()
pbar.set_description(f"Validating Epoch {epoch} at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, loss: {loss.item():.4f}")
epoch_end_time = time()
epoch_train_loss_reduced = sum(epoch_train_loss) / len(epoch_train_loss)
epoch_val_loss_reduced = sum(epoch_val_loss) / len(epoch_val_loss)
train_losses.append(epoch_train_loss_reduced)
val_losses.append(epoch_val_loss_reduced)
lr_scheduler.step(epoch_val_loss_reduced)
model_weights = medsam_lite_model.state_dict()
checkpoint = {
"model": model_weights,
"epoch": epoch,
"optimizer": optimizer.state_dict(),
"loss": epoch_train_loss_reduced,
"best_loss": best_loss,
}
torch.save(checkpoint, join(work_dir, "medsam_lite_latest.pth"))
if epoch_val_loss_reduced < best_loss:
print(f"New best loss: {best_loss:.4f} -> {epoch_val_loss_reduced:.4f}")
best_loss = epoch_val_loss_reduced
checkpoint["best_loss"] = best_loss
torch.save(checkpoint, join(work_dir, "medsam_lite_best.pth"))
# %% plot loss
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
axes[0].title.set_text("Dice + Binary Cross Entropy + IoU Loss")
axes[0].plot(train_losses, label="Train")
axes[0].plot(val_losses, label="Val")
axes[0].set_ylabel("Loss")
axes[0].legend()
axes[1].plot(epoch_times)
axes[1].title.set_text("Epoch Duration")
axes[1].set_ylabel("Duration (s)")
axes[1].set_xlabel("Epoch")
plt.tight_layout()
plt.savefig(join(work_dir, "log.png"))
plt.close()