-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
246 lines (199 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# python version 3.7.1
# -*- coding: utf-8 -*-
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import copy
import numpy as np
import random
import torch
import torch.nn.functional as F
from torch.utils.data import Subset
from sklearn.mixture import GaussianMixture
import torch.nn as nn
from util.options import args_parser
from util.local_training import LocalUpdate, globaltest
from util.fedavg import FedAvg
from util.util import add_noise, lid_term, get_output
from util.dataset import get_dataset
from model.build_model import build_model
np.set_printoptions(threshold=np.inf)
"""
Major framework of noise FL
"""
if __name__ == '__main__':
# parse args
args = args_parser()
print(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
rootpath = "./record/"
dataset_train, dataset_test, dict_users = get_dataset(args)
# ---------------------Add Noise ---------------------------
y_train = np.array(dataset_train.targets)
y_train_noisy, gamma_s, real_noise_level = add_noise(args, y_train, dict_users)
dataset_train.targets = y_train_noisy
if not os.path.exists(rootpath + 'txtsave/'):
os.makedirs(rootpath + 'txtsave/')
txtpath = rootpath + 'txtsave/%s_%s_NL_%.1f_LB_%.1f_Iter_%d_Rnd_%d_%d_ep_%d_Frac_%.3f_%.2f_LR_%.3f_ReR_%.1f_ConT_%.1f_ClT_%.1f_Beta_%.1f_Seed_%d' % (
args.dataset, args.model, args.level_n_system, args.level_n_lowerb, args.iteration1, args.rounds1,
args.rounds2, args.local_ep, args.frac1, args.frac2, args.lr, args.relabel_ratio,
args.confidence_thres, args.clean_set_thres, args.beta, args.seed)
if args.iid:
txtpath += "_IID"
else:
txtpath += "_nonIID_p_%.1f_dirich_%.1f"%(args.non_iid_prob_class,args.alpha_dirichlet)
if args.fine_tuning:
txtpath += "_FT"
if args.correction:
txtpath += "_CORR"
if args.mixup:
txtpath += "_Mix_%.1f" % (args.alpha)
f_acc = open(txtpath + '_acc.txt', 'a')
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# build model
netglob = build_model(args)
net_local = build_model(args)
client_p_index = np.where(gamma_s == 0)[0]
client_n_index = np.where(gamma_s > 0)[0]
criterion = nn.CrossEntropyLoss(reduction='none')
LID_accumulative_client = np.zeros(args.num_users)
for iteration in range(args.iteration1):
LID_whole = np.zeros(len(y_train))
loss_whole = np.zeros(len(y_train))
LID_client = np.zeros(args.num_users)
loss_accumulative_whole = np.zeros(len(y_train))
# ---------Broadcast global model----------------------
if iteration == 0:
mu_list = np.zeros(args.num_users)
else:
mu_list = estimated_noisy_level
prob = [1 / args.num_users] * args.num_users
for _ in range(int(1/args.frac1)):
idxs_users = np.random.choice(range(args.num_users), int(args.num_users*args.frac1), p=prob)
w_locals = []
for idx in idxs_users:
prob[idx] = 0
if sum(prob) > 0:
prob = [prob[i] / sum(prob) for i in range(len(prob))]
net_local.load_state_dict(netglob.state_dict())
sample_idx = np.array(list(dict_users[idx]))
dataset_client = Subset(dataset_train, sample_idx)
loader = torch.utils.data.DataLoader(dataset=dataset_client, batch_size=100, shuffle=False)
# proximal term operation
mu_i = mu_list[idx]
local = LocalUpdate(args=args, dataset=dataset_train, idxs=sample_idx)
w, loss = local.update_weights(net=copy.deepcopy(net_local).to(args.device), seed=args.seed,
w_g=netglob.to(args.device), epoch=args.local_ep, mu=mu_i)
net_local.load_state_dict(copy.deepcopy(w))
w_locals.append(copy.deepcopy(w))
acc_t = globaltest(copy.deepcopy(net_local).to(args.device), dataset_test, args)
f_acc.write("iteration %d, client %d, acc: %.4f \n" % (iteration, idx, acc_t))
f_acc.flush()
local_output, loss = get_output(loader, net_local.to(args.device), args, False, criterion)
LID_local = list(lid_term(local_output, local_output))
LID_whole[sample_idx] = LID_local
loss_whole[sample_idx] = loss
LID_client[idx] = np.mean(LID_local)
dict_len = [len(dict_users[idx]) for idx in idxs_users]
w_glob = FedAvg(w_locals, dict_len)
netglob.load_state_dict(copy.deepcopy(w_glob))
LID_accumulative_client = LID_accumulative_client + np.array(LID_client)
loss_accumulative_whole = loss_accumulative_whole + np.array(loss_whole)
# Apply Gaussian Mixture Model to LID
gmm_LID_accumulative = GaussianMixture(n_components=2, random_state=args.seed).fit(
np.array(LID_accumulative_client).reshape(-1, 1))
labels_LID_accumulative = gmm_LID_accumulative.predict(np.array(LID_accumulative_client).reshape(-1, 1))
clean_label = np.argsort(gmm_LID_accumulative.means_[:, 0])[0]
noisy_set = np.where(labels_LID_accumulative != clean_label)[0]
clean_set = np.where(labels_LID_accumulative == clean_label)[0]
estimated_noisy_level = np.zeros(args.num_users)
for client_id in noisy_set:
sample_idx = np.array(list(dict_users[client_id]))
loss = np.array(loss_accumulative_whole[sample_idx])
gmm_loss = GaussianMixture(n_components=2, random_state=args.seed).fit(np.array(loss).reshape(-1, 1))
labels_loss = gmm_loss.predict(np.array(loss).reshape(-1, 1))
gmm_clean_label_loss = np.argsort(gmm_loss.means_[:, 0])[0]
pred_n = np.where(labels_loss.flatten() != gmm_clean_label_loss)[0]
estimated_noisy_level[client_id] = len(pred_n) / len(sample_idx)
y_train_noisy_new = np.array(dataset_train.targets)
if args.correction:
for idx in noisy_set:
sample_idx = np.array(list(dict_users[idx]))
dataset_client = Subset(dataset_train, sample_idx)
loader = torch.utils.data.DataLoader(dataset=dataset_client, batch_size=100, shuffle=False)
loss = np.array(loss_accumulative_whole[sample_idx])
local_output, _ = get_output(loader, netglob.to(args.device), args, False, criterion)
relabel_idx = (-loss).argsort()[:int(len(sample_idx) * estimated_noisy_level[idx] * args.relabel_ratio)]
relabel_idx = list(set(np.where(np.max(local_output, axis=1) > args.confidence_thres)[0]) & set(relabel_idx))
y_train_noisy_new = np.array(dataset_train.targets)
y_train_noisy_new[sample_idx[relabel_idx]] = np.argmax(local_output, axis=1)[relabel_idx]
dataset_train.targets = y_train_noisy_new
# reset the beta,
args.beta = 0
# ---------------------------- second stage training -------------------------------
if args.fine_tuning:
selected_clean_idx = np.where(estimated_noisy_level <= args.clean_set_thres)[0]
prob = np.zeros(args.num_users) # np.zeros(100)
prob[selected_clean_idx] = 1 / len(selected_clean_idx)
m = max(int(args.frac2 * args.num_users), 1) # num_select_clients
m = min(m, len(selected_clean_idx))
netglob = copy.deepcopy(netglob)
# add fl training
for rnd in range(args.rounds1):
w_locals, loss_locals = [], []
idxs_users = np.random.choice(range(args.num_users), m, replace=False, p=prob)
for idx in idxs_users: # training over the subset
local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[idx])
w_local, loss_local = local.update_weights(net=copy.deepcopy(netglob).to(args.device), seed=args.seed,
w_g=netglob.to(args.device), epoch=args.local_ep, mu=0)
w_locals.append(copy.deepcopy(w_local)) # store every updated model
loss_locals.append(copy.deepcopy(loss_local))
dict_len = [len(dict_users[idx]) for idx in idxs_users]
w_glob_fl = FedAvg(w_locals, dict_len)
netglob.load_state_dict(copy.deepcopy(w_glob_fl))
acc_s2 = globaltest(copy.deepcopy(netglob).to(args.device), dataset_test, args)
f_acc.write("fine tuning stage round %d, test acc %.4f \n" % (rnd, acc_s2))
f_acc.flush()
if args.correction:
relabel_idx_whole = []
for idx in noisy_set:
sample_idx = np.array(list(dict_users[idx]))
dataset_client = Subset(dataset_train, sample_idx)
loader = torch.utils.data.DataLoader(dataset=dataset_client, batch_size=100, shuffle=False)
glob_output, _ = get_output(loader, netglob.to(args.device), args, False, criterion)
y_predicted = np.argmax(glob_output, axis=1)
relabel_idx = np.where(np.max(glob_output, axis=1) > args.confidence_thres)[0]
y_train_noisy_new = np.array(dataset_train.targets)
y_train_noisy_new[sample_idx[relabel_idx]] = y_predicted[relabel_idx]
dataset_train.targets = y_train_noisy_new
# ---------------------------- third stage training -------------------------------
# third stage hyper-parameter initialization
m = max(int(args.frac2 * args.num_users), 1) # num_select_clients
prob = [1/args.num_users for i in range(args.num_users)]
for rnd in range(args.rounds2):
w_locals, loss_locals = [], []
idxs_users = np.random.choice(range(args.num_users), m, replace=False, p=prob)
for idx in idxs_users: # training over the subset
local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[idx])
w_local, loss_local = local.update_weights(net=copy.deepcopy(netglob).to(args.device), seed=args.seed,
w_g=netglob.to(args.device), epoch=args.local_ep, mu=0)
w_locals.append(copy.deepcopy(w_local)) # store every updated model
loss_locals.append(copy.deepcopy(loss_local))
# w_glob_fl = FedAvg(w_locals) # global averaging
# if args.iid:
dict_len = [len(dict_users[idx]) for idx in idxs_users]
w_glob_fl = FedAvg(w_locals, dict_len)
netglob.load_state_dict(copy.deepcopy(w_glob_fl))
acc_s2 = globaltest(copy.deepcopy(netglob).to(args.device), dataset_test, args)
f_acc.write("third stage round %d, test acc %.4f \n" % (rnd, acc_s2))
f_acc.flush()
torch.cuda.empty_cache()