forked from etched-ai/open-oasis
-
Notifications
You must be signed in to change notification settings - Fork 10
/
dit.py
346 lines (288 loc) · 12.2 KB
/
dit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
References:
- DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
- Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing/blob/main/algorithms/diffusion_forcing/models/unet3d.py
- Latte: https://github.com/Vchitect/Latte/blob/main/models/latte.py
"""
from typing import Optional, Literal
import torch
from torch import nn
from rotary_embedding_torch import RotaryEmbedding
from einops import rearrange
from attention import SpatialAxialAttention, TemporalAxialAttention
from timm.models.vision_transformer import Mlp
from timm.layers.helpers import to_2tuple
import math
def modulate(x, shift, scale):
fixed_dims = [1] * len(shift.shape[1:])
shift = shift.repeat(x.shape[0] // shift.shape[0], *fixed_dims)
scale = scale.repeat(x.shape[0] // scale.shape[0], *fixed_dims)
while shift.dim() < x.dim():
shift = shift.unsqueeze(-2)
scale = scale.unsqueeze(-2)
return x * (1 + scale) + shift
def gate(x, g):
fixed_dims = [1] * len(g.shape[1:])
g = g.repeat(x.shape[0] // g.shape[0], *fixed_dims)
while g.dim() < x.dim():
g = g.unsqueeze(-2)
return g * x
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_height=256,
img_width=256,
patch_size=16,
in_chans=3,
embed_dim=768,
norm_layer=None,
flatten=True,
):
super().__init__()
img_size = (img_height, img_width)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x, random_sample=False):
B, C, H, W = x.shape
assert random_sample or (H == self.img_size[0] and W == self.img_size[1]), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = rearrange(x, "B C H W -> B (H W) C")
else:
x = rearrange(x, "B C H W -> B H W C")
x = self.norm(x)
return x
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True), # hidden_size is diffusion model hidden size
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class SpatioTemporalDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
is_causal=True,
spatial_rotary_emb: Optional[RotaryEmbedding] = None,
temporal_rotary_emb: Optional[RotaryEmbedding] = None,
):
super().__init__()
self.is_causal = is_causal
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.s_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.s_attn = SpatialAxialAttention(
hidden_size,
heads=num_heads,
dim_head=hidden_size // num_heads,
rotary_emb=spatial_rotary_emb,
)
self.s_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.s_mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=approx_gelu,
drop=0,
)
self.s_adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.t_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.t_attn = TemporalAxialAttention(
hidden_size,
heads=num_heads,
dim_head=hidden_size // num_heads,
is_causal=is_causal,
rotary_emb=temporal_rotary_emb,
)
self.t_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.t_mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=approx_gelu,
drop=0,
)
self.t_adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
def forward(self, x, c):
B, T, H, W, D = x.shape
# spatial block
s_shift_msa, s_scale_msa, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = self.s_adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate(self.s_attn(modulate(self.s_norm1(x), s_shift_msa, s_scale_msa)), s_gate_msa)
x = x + gate(self.s_mlp(modulate(self.s_norm2(x), s_shift_mlp, s_scale_mlp)), s_gate_mlp)
# temporal block
t_shift_msa, t_scale_msa, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = self.t_adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate(self.t_attn(modulate(self.t_norm1(x), t_shift_msa, t_scale_msa)), t_gate_msa)
x = x + gate(self.t_mlp(modulate(self.t_norm2(x), t_shift_mlp, t_scale_mlp)), t_gate_mlp)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_h=18,
input_w=32,
patch_size=2,
in_channels=16,
hidden_size=1024,
depth=12,
num_heads=16,
mlp_ratio=4.0,
external_cond_dim=25,
max_frames=32,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.max_frames = max_frames
self.x_embedder = PatchEmbed(input_h, input_w, patch_size, in_channels, hidden_size, flatten=False)
self.t_embedder = TimestepEmbedder(hidden_size)
frame_h, frame_w = self.x_embedder.grid_size
self.spatial_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads // 2, freqs_for="pixel", max_freq=256)
self.temporal_rotary_emb = RotaryEmbedding(dim=hidden_size // num_heads)
self.external_cond = nn.Linear(external_cond_dim, hidden_size) if external_cond_dim > 0 else nn.Identity()
self.blocks = nn.ModuleList(
[
SpatioTemporalDiTBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
is_causal=True,
spatial_rotary_emb=self.spatial_rotary_emb,
temporal_rotary_emb=self.temporal_rotary_emb,
)
for _ in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.s_adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.s_adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.t_adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.t_adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, H, W, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = x.shape[1]
w = x.shape[2]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def forward(self, x, t, external_cond=None):
"""
Forward pass of DiT.
x: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (B, T,) tensor of diffusion timesteps
"""
B, T, C, H, W = x.shape
# Flatten batch and time dimensions
x = x.view(B * T, C, H, W) # (B*T, C, H, W)
x = self.x_embedder(x) # (B*T, H/2, W/2, D)
_, h, w, D = x.shape # Update h, w, D after embedding
# Restore batch and time dimensions
x = x.view(B, T, h, w, D) # (B, T, h, w, D)
# Embed noise steps
t = t.reshape(B * T) # (B*T,)
c = self.t_embedder(t) # (B*T, D)
c = c.view(B, T, D) # (B, T, D)
if external_cond is not None:
c += self.external_cond(external_cond)
# Pass through transformer blocks
for block in self.blocks:
x = block(x, c) # (B, T, h, w, D)
# Final layer
x = self.final_layer(x, c) # (B, T, h, w, d)
# Flatten batch and time dimensions for unpatchify
x = x.view(B * T, h, w, -1) # (B*T, h, w, d)
x = self.unpatchify(x) # (B*T, out_channels, H, W)
# Restore batch and time dimensions
x = x.view(B, T, -1, H, W) # (B, T, out_channels, H, W)
return x
def DiT_S_2():
return DiT(
patch_size=2,
hidden_size=1024,
depth=16,
num_heads=16,
)
DiT_models = {
"DiT-S/2": DiT_S_2
}