Skip to content

Latest commit

 

History

History
244 lines (175 loc) · 7.77 KB

README_multimodal.md

File metadata and controls

244 lines (175 loc) · 7.77 KB

Dataprep Microservice for Multimodal Data with Redis

This dataprep microservice accepts the following from the user and ingests them into a Redis vector store:

  • Videos (mp4 files) and their transcripts (optional)
  • Images (gif, jpg, jpeg, and png files) and their captions (optional)
  • Audio (wav files)
  • PDFs (with text and images)

🚀1. Start Microservice with Python(Option 1)

1.1 Install Requirements

# Install ffmpeg static build
wget https://johnvansickle.com/ffmpeg/builds/ffmpeg-git-amd64-static.tar.xz
mkdir ffmpeg-git-amd64-static
tar -xvf ffmpeg-git-amd64-static.tar.xz -C ffmpeg-git-amd64-static --strip-components 1
export PATH=$(pwd)/ffmpeg-git-amd64-static:$PATH
cp $(pwd)/ffmpeg-git-amd64-static/ffmpeg /usr/local/bin/

pip install -r requirements.txt

1.2 Start Redis Stack Server

Please refer to this readme.

1.3 Setup Environment Variables

export your_ip=$(hostname -I | awk '{print $1}')
export REDIS_URL="redis://${your_ip}:6379"
export INDEX_NAME=${your_redis_index_name}
export PYTHONPATH=${path_to_comps}

1.4 Start LVM Microservice (Optional)

This is required only if you are going to consume the generate_captions API of this microservice as in Section 4.3.

Please refer to this readme to start the LVM microservice. After LVM is up, set up environment variables.

export your_ip=$(hostname -I | awk '{print $1}')
export LVM_ENDPOINT="http://${your_ip}:9399/v1/lvm"

1.5 Start Data Preparation Microservice for Redis with Python Script

Start document preparation microservice for Redis with below command.

python prepare_videodoc_redis.py

🚀2. Start Microservice with Docker (Option 2)

2.1 Start Redis Stack Server

Please refer to this readme.

2.2 Start LVM Microservice (Optional)

This is required only if you are going to consume the generate_captions API of this microservice as described here.

Please refer to this readme to start the LVM microservice. After LVM is up, set up environment variables.

export your_ip=$(hostname -I | awk '{print $1}')
export LVM_ENDPOINT="http://${your_ip}:9399/v1/lvm"

2.3 Setup Environment Variables

export your_ip=$(hostname -I | awk '{print $1}')
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc"
export REDIS_URL="redis://${your_ip}:6379"
export WHISPER_MODEL="base"
export INDEX_NAME=${your_redis_index_name}
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}

2.4 Build Docker Image

cd ../../../../
docker build -t opea/dataprep-multimodal-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile .

2.5 Run Docker with CLI (Option A)

docker run -d --name="dataprep-multimodal-redis" -p 6007:6007 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e REDIS_URL=$REDIS_URL -e INDEX_NAME=$INDEX_NAME -e LVM_ENDPOINT=$LVM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e MULTIMODAL_DATAPREP=true -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_MULTIMODALREDIS" opea/dataprep-multimodal-redis:latest

2.6 Run with Docker Compose (Option B - deprecated, will move to genAIExample in future)

cd comps/dataprep/multimodal/redis/langchain
docker compose -f compose_redis_multimodal.yaml up -d

🚀3. Status Microservice

docker container logs -f dataprep-multimodal-redis

🚀4. Consume Microservice

Once this dataprep microservice is started, user can use the below commands to invoke the microservice to convert images, videos, text, and PDF files to embeddings and save to the Redis vector store.

This microservice provides 3 different ways for users to ingest files into Redis vector store corresponding to the 3 use cases.

4.1 Consume ingest_with_text API

Use case: This API is used for videos accompanied by transcript files (.vtt format), images accompanied by text caption files (.txt format), and PDF files containing a mix of text and images.

Important notes:

  • Make sure the file paths after files=@ are correct.
  • Every transcript or caption file's name must be identical to its corresponding video or image file's name (except their extension - .vtt goes with .mp4 and .txt goes with .jpg, .jpeg, .png, or .gif). For example, video1.mp4 and video1.vtt. Otherwise, if video1.vtt is not included correctly in the API call, the microservice will return an error No captions file video1.vtt found for video1.mp4.
  • It is assumed that PDFs will contain at least one image. Each image in the file will be embedded along with the text that appears on the same page as the image.

Single video-transcript pair upload

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./video1.mp4" \
    -F "files=@./video1.vtt" \
    http://localhost:6007/v1/dataprep/ingest

Single image-caption pair upload

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./image.jpg" \
    -F "files=@./image.txt" \
    http://localhost:6007/v1/dataprep/ingest

Multiple file pair upload

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./video1.mp4" \
    -F "files=@./video1.vtt" \
    -F "files=@./video2.mp4" \
    -F "files=@./video2.vtt" \
    -F "files=@./image1.png" \
    -F "files=@./image1.txt" \
    -F "files=@./image2.jpg" \
    -F "files=@./image2.txt" \
    -F "files=@./example.pdf" \
    http://localhost:6007/v1/dataprep/ingest

4.2 Consume generate_transcripts API

Use case: This API should be used when a video has meaningful audio or recognizable speech but its transcript file is not available, or for audio files with speech.

In this use case, this microservice will use whisper model to generate the .vtt transcript for the video or audio files.

Single file upload

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./video1.mp4" \
    http://localhost:6007/v1/dataprep/generate_transcripts

Multiple file upload

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./video1.mp4" \
    -F "files=@./video2.mp4" \
    -F "files=@./audio1.wav" \
    http://localhost:6007/v1/dataprep/generate_transcripts

4.3 Consume generate_captions API

Use case: This API should be used when uploading an image, or when uploading a video that does not have meaningful audio or does not have audio.

In this use case, there is no meaningful language transcription. Thus, it is preferred to leverage a LVM microservice to summarize the frames.

  • Single video upload
curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./video1.mp4" \
    http://localhost:6007/v1/dataprep/generate_captions
  • Multiple video upload
curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./video1.mp4" \
    -F "files=@./video2.mp4" \
    http://localhost:6007/v1/dataprep/generate_captions
  • Single image upload
curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./image.jpg" \
    http://localhost:6007/v1/dataprep/generate_captions

4.4 Consume get API

To get names of uploaded files, use the following command.

curl -X POST \
    -H "Content-Type: application/json" \
    http://localhost:6007/v1/dataprep/get

4.5 Consume delete API

To delete uploaded files and clear the database, use the following command.

curl -X POST \
    -H "Content-Type: application/json" \
    http://localhost:6007/v1/dataprep/delete