forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Matmul.h
76 lines (64 loc) · 1.98 KB
/
Matmul.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <ATen/native/LinearAlgebraUtils.h> // For TransposeType
namespace at::native {
// result = beta * result + alpha * gemm(mat1, mat2)
TORCH_API void mkldnn_matmul(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result,
float beta=1,
float alpha=1);
bool use_mkldnn_bf16_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result_opt);
bool use_mkldnn_fp16_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result_opt);
bool use_mkldnn_bf32_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result_opt);
// Try running mkldnn optimized gemm, or returns false if naive gemm would be faster
bool mkldnn_bf16_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const c10::BFloat16 *a, int64_t lda,
const c10::BFloat16 *b, int64_t ldb,
float beta,
c10::BFloat16 *c, int64_t ldc);
bool mkldnn_fp16_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const c10::Half *a, int64_t lda,
const c10::Half *b, int64_t ldb,
float beta,
c10::Half *c, int64_t ldc);
/*
oneDNN implicit reduced precision arithmetic feature
https://github.com/mgouicem/oneDNN/tree/mgouicem/rfcs/implicit_downconvert/rfcs/20210301-computation-datatype
to allow implicitly cast data type from FP32 to BF16 in onednn compute primitives
*/
bool mkldnn_bf32_gemm(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
float alpha,
const float *a, int64_t lda,
const float *b, int64_t ldb,
float beta,
float *c, int64_t ldc);
bool use_mkldnn_matmul(
const Tensor& mat1,
const Tensor& mat2,
const Tensor& result);
// x:s8 * w:s8 -> y:s32
TORCH_API void mkldnn_matmul_i8i8i32(
const Tensor &mat1,
const Tensor &mat2,
const Tensor &result);
}