-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_FAR_mp.py
327 lines (268 loc) · 15.7 KB
/
train_FAR_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from pathlib import Path
import random
from datetime import datetime
from model import VPTREnc, VPTRDec, VPTRDisc, init_weights, VPTRFormerNAR, VPTRFormerFAR
from model import GDL, MSELoss, L1Loss, GANLoss, BiPatchNCE
from utils import KTHDataset, BAIRDataset, MovingMNISTDataset
from utils import get_dataloader
from utils import visualize_batch_clips, save_ckpt, load_ckpt, set_seed, AverageMeters, init_loss_dict, write_summary, resume_training
from utils import set_seed, gather_AverageMeters
import logging
import os
import argparse
parser = argparse.ArgumentParser(description='Datadistributed training of FAR')
parser.add_argument('--init_method', default='tcp://127.0.0.2:29501', type=str, help='')
def FAR_show_sample(VPTR_Enc, VPTR_Dec, VPTR_Transformer, num_pred, sample, save_dir, device, renorm_transform, test_phase = True):
VPTR_Transformer = VPTR_Transformer.eval()
with torch.no_grad():
past_frames, future_frames = sample
past_frames = past_frames.to(device)
future_frames = future_frames.to(device)
past_gt_feats = VPTR_Enc(past_frames)
future_gt_feats = VPTR_Enc(future_frames)
if test_phase:
pred_feats = VPTR_Transformer(past_gt_feats)
for i in range(num_pred-1):
if i == 0:
input_feats = torch.cat([past_gt_feats, pred_feats[:, -1:, ...]], dim = 1)
else:
pred_future_frame = VPTR_Dec(pred_feats[:, -1:, ...])
pred_future_feat = VPTR_Enc(pred_future_frame)
input_feats = torch.cat([input_feats, pred_future_feat], dim = 1)
pred_feats = VPTR_Transformer(input_feats)
else:
input_feats = torch.cat([past_gt_feats, future_gt_feats[:, 0:-1, ...]], dim = 1)
pred_feats = VPTR_Transformer(input_feats)
pred_frames = VPTR_Dec(pred_feats)
pred_past_frames = pred_frames[:, 0:-num_pred, ...]
pred_future_frames = pred_frames[:, -num_pred:, ...]
N = pred_future_frames.shape[0]
idx = min(N, 4)
TP = past_frames.shape[1]
TF = future_frames.shape[1]
if TP < TF:
N, _, C, H, W = past_frames.shape
past_frames = torch.cat([past_frames, torch.zeros(N, TF-TP, C, H, W).to(past_frames.device)], dim = 1)
pred_past_frames = torch.cat([pred_past_frames, torch.zeros(N, TF-TP, C, H, W).to(pred_past_frames.device)], dim = 1)
visualize_batch_clips(past_frames[0:idx, :, ...], future_frames[0:idx, :, ...], pred_future_frames[0:idx, :, ...], save_dir, renorm_transform, desc = 'pred_future')
visualize_batch_clips(past_frames[0:idx, 1:, ...], pred_past_frames[0:idx, :, ...], pred_future_frames[0:idx, :-1, ...], save_dir, renorm_transform, desc = 'pred_past')
def cal_lossD(VPTR_Disc, fake_imgs, real_imgs, lam_gan):
pred_fake = VPTR_Disc(fake_imgs.detach().flatten(0, 1))
loss_D_fake = gan_loss(pred_fake, False)
# Real
pred_real = VPTR_Disc(real_imgs.flatten(0,1))
loss_D_real = gan_loss(pred_real, True)
# combine loss and calculate gradients
loss_D = (loss_D_fake + loss_D_real) * 0.5 * lam_gan
return loss_D, loss_D_fake, loss_D_real
def cal_lossT(fake_imgs, real_imgs, VPTR_Disc, mse_loss, gdl_loss, lam_gan):
T_MSE_loss = mse_loss(fake_imgs, real_imgs)
T_GDL_loss = gdl_loss(real_imgs, fake_imgs)
if VPTR_Disc is not None:
assert lam_gan is not None, "Please input lam_gan"
pred_fake = VPTR_Disc(fake_imgs.flatten(0, 1))
loss_T_gan = gan_loss(pred_fake, True)
loss_T = T_GDL_loss + T_MSE_loss + lam_gan * loss_T_gan
else:
loss_T_gan = torch.zeros(1)
loss_T = T_GDL_loss + T_MSE_loss
return loss_T, T_GDL_loss, T_MSE_loss, loss_T_gan
def init_models(img_channels, encC, encH, encW, dropout, out_layer, rpe, rank, Transformer_lr, resume_AE_ckpt, resume_Transformer_ckpt = None, num_encoder_layers = 12, num_past_frames = 10,
num_future_frames = 10, init_Disc = False, train_Disc = False, padding_type = 'reflect'):
VPTR_Enc = VPTREnc(img_channels, feat_dim = encC, n_downsampling = 3, padding_type = padding_type).to(rank)
VPTR_Dec = VPTRDec(img_channels, feat_dim = encC, n_downsampling = 3, out_layer = out_layer, padding_type = padding_type).to(rank)
#load the trained autoencoder, we initialize the discriminator from scratch, for a balanced training
start_epoch, history_loss_dict = resume_training({'VPTR_Enc': VPTR_Enc, 'VPTR_Dec': VPTR_Dec}, {}, resume_AE_ckpt, map_location = f'cuda:{rank}')
loss_name_list = ['T_MSE', 'T_GDL', 'T_gan', 'T_total', 'Dtotal', 'Dfake', 'Dreal']
loss_dict = init_loss_dict(loss_name_list, history_loss_dict)
VPTR_Enc = DDP(VPTR_Enc, device_ids=[rank])
VPTR_Dec = DDP(VPTR_Dec, device_ids=[rank])
VPTR_Enc = VPTR_Enc.eval()
VPTR_Dec = VPTR_Dec.eval()
VPTR_Disc = None
if init_Disc:
VPTR_Disc = VPTRDisc(img_channels, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d).to(rank)
init_weights(VPTR_Disc)
if not train_Disc:
_, _ = resume_training({'VPTR_Disc': VPTR_Disc}, {}, resume_AE_ckpt, map_location = f'cuda:{rank}')
VPTR_Disc = DDP(VPTR_Disc, device_ids=[rank])
if not train_Disc:
VPTR_Disc = VPTR_Disc.eval()
VPTR_Transformer = VPTRFormerFAR(num_past_frames, num_future_frames, encH, encW, d_model=encC,
nhead=8, num_encoder_layers=num_encoder_layers, dropout=dropout,
window_size=4, Spatial_FFN_hidden_ratio=4, rpe=rpe).to(rank)
optimizer_T = torch.optim.AdamW(params = VPTR_Transformer.parameters(), lr = Transformer_lr)
if resume_Transformer_ckpt is not None:
start_epoch, history_loss_dict = resume_training({'VPTR_Transformer': VPTR_Transformer}, {'optimizer_T':optimizer_T}, resume_Transformer_ckpt, map_location = f'cuda:{rank}')
loss_dict = init_loss_dict(loss_name_list, history_loss_dict)
VPTR_Transformer = DDP(VPTR_Transformer, device_ids=[rank])
optimizer_D = None
gan_loss = None
if train_Disc:
optimizer_D = torch.optim.Adam(params = VPTR_Disc.parameters(), lr = Transformer_lr, betas = (0.5, 0.999))
gan_loss = GANLoss('vanilla', target_real_label=1.0, target_fake_label=0.0).to(rank)
mse_loss = MSELoss()
gdl_loss = GDL(alpha = 1)
return VPTR_Enc, VPTR_Dec, VPTR_Disc, VPTR_Transformer, optimizer_D, optimizer_T, start_epoch, loss_dict, mse_loss, gdl_loss, gan_loss, loss_name_list
def single_iter(VPTR_Enc, VPTR_Dec, VPTR_Disc, VPTR_Transformer, optimizer_T, optimizer_D, sample, device, mse_loss, gdl_loss, gan_loss, lam_gan, max_grad_norm, train_flag = True):
past_frames, future_frames = sample
past_frames = past_frames.to(device)
future_frames = future_frames.to(device)
with torch.no_grad():
x = torch.cat([past_frames, future_frames[:, 0:-1, ...]], dim = 1)
gt_feats = VPTR_Enc(x)
if train_flag:
VPTR_Transformer = VPTR_Transformer.train()
VPTR_Transformer.zero_grad(set_to_none=True)
VPTR_Dec.zero_grad(set_to_none=True)
pred_future_feats = VPTR_Transformer(gt_feats)
pred_frames = VPTR_Dec(pred_future_feats)
if optimizer_D is not None:
assert lam_gan is not None, "Input lam_gan"
#update discriminator
VPTR_Disc = VPTR_Disc.train()
for p in VPTR_Disc.parameters():
p.requires_grad_(True)
VPTR_Disc.zero_grad(set_to_none=True)
loss_D, loss_D_fake, loss_D_real = cal_lossD(VPTR_Disc, pred_frames, future_frames, lam_gan)
loss_D.backward()
optimizer_D.step()
for p in VPTR_Disc.parameters():
p.requires_grad_(False)
#update Transformer (generator)
loss_T, T_GDL_loss, T_MSE_loss, loss_T_gan = cal_lossT(pred_frames, torch.cat([past_frames[:, 1:, ...], future_frames], dim = 1), VPTR_Disc, mse_loss, gdl_loss, lam_gan)
loss_T.backward()
nn.utils.clip_grad_norm_(VPTR_Transformer.parameters(), max_norm=max_grad_norm, norm_type=2)
optimizer_T.step()
else:
if optimizer_D is not None:
VPTR_Disc = VPTR_Disc.eval()
VPTR_Transformer = VPTR_Transformer.eval()
with torch.no_grad():
pred_future_feats = VPTR_Transformer(gt_feats)
pred_frames = VPTR_Dec(pred_future_feats)
if optimizer_D is not None:
loss_D, loss_D_fake, loss_D_real = cal_lossD(VPTR_Disc, pred_frames, future_frames, lam_gan)
loss_T, T_GDL_loss, T_MSE_loss, loss_T_gan = cal_lossT(pred_frames, torch.cat([past_frames[:, 1:, ...], future_frames], dim = 1), VPTR_Disc, mse_loss, gdl_loss, lam_gan)
if optimizer_D is None:
loss_D, loss_D_fake, loss_D_real = torch.zeros(1), torch.zeros(1), torch.zeros(1)
iter_loss_dict = {'T_total': loss_T.item(), 'T_MSE': T_MSE_loss.item(), 'T_GDL': T_GDL_loss.item(), 'T_gan': loss_T_gan.item(), 'Dtotal': loss_D.item(), 'Dfake':loss_D_fake.item(), 'Dreal':loss_D_real.item()}
return iter_loss_dict
def setup(rank, world_size, args):
# initialize the process group
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def main_worker(rank, args, world_size, img_channels, encC, encH, encW, dropout, out_layer, rpe, Transformer_lr, max_grad_norm, lam_gan, resume_AE_ckpt,
data_set_name, batch_size, data_set_dir, dev_set_size, epochs, ckpt_save_dir, tensorboard_save_dir,
resume_Transformer_ckpt = None, num_encoder_layers = 12, num_past_frames = 10,
num_future_frames = 10, init_Disc = False, train_Disc = False,
num_workers = 8, show_example_epochs = 10, save_ckpt_epochs = 2, padding_type = 'reflect'):
setup(rank, world_size, args)
torch.cuda.set_device(rank)
if rank == 0:
#############Set the logger#########
if not Path(ckpt_save_dir).exists():
Path(ckpt_save_dir).mkdir(parents=True, exist_ok=True)
logging.basicConfig(level=logging.INFO,
datefmt='%a, %d %b %Y %H:%M:%S',
format='%(asctime)s - %(message)s',
filename=ckpt_save_dir.joinpath('train_log.log').absolute().as_posix(),
filemode='a')
summary_writer = SummaryWriter(tensorboard_save_dir.absolute().as_posix())
VPTR_Enc, VPTR_Dec, VPTR_Disc, VPTR_Transformer, \
optimizer_D, optimizer_T, start_epoch, loss_dict, \
mse_loss, gdl_loss, gan_loss, loss_name_list = init_models(img_channels, encC, encH, encW, dropout, out_layer, rpe, rank, Transformer_lr, resume_AE_ckpt,
resume_Transformer_ckpt, num_encoder_layers, num_past_frames,
num_future_frames, init_Disc, train_Disc, padding_type)
train_loader, val_loader, _, renorm_transform = get_dataloader(data_set_name, batch_size, data_set_dir, ngpus = world_size, num_workers = num_workers)
for epoch in range(start_epoch+1, start_epoch + epochs+1):
epoch_st = datetime.now()
#Train
train_EpochAveMeter = AverageMeters(loss_name_list)
for idx, sample in enumerate(train_loader, 0):
iter_loss_dict = single_iter(VPTR_Enc, VPTR_Dec, VPTR_Disc, VPTR_Transformer, optimizer_T, optimizer_D,
sample, rank, mse_loss, gdl_loss, gan_loss, lam_gan, max_grad_norm, train_flag = True)
train_EpochAveMeter.iter_update(iter_loss_dict)
train_ave_meters = [None for i in range(world_size)]
dist.all_gather_object(train_ave_meters, train_EpochAveMeter)
if rank == 0:
train_meter = gather_AverageMeters(train_ave_meters)
loss_dict = train_meter.epoch_update(loss_dict, epoch, train_flag = True)
write_summary(summary_writer, loss_dict, train_flag = True)
if epoch % show_example_epochs == 0 or epoch == 1:
FAR_show_sample(VPTR_Enc, VPTR_Dec, VPTR_Transformer, num_future_frames, sample, ckpt_save_dir.joinpath(f'train_gifs_epoch{epoch}'), rank, renorm_transform, test_phase = False)
#validation
val_EpochAveMeter = AverageMeters(loss_name_list)
for idx, sample in enumerate(val_loader, 0):
iter_loss_dict = single_iter(VPTR_Enc, VPTR_Dec, VPTR_Disc, VPTR_Transformer, optimizer_T, optimizer_D,
sample, rank, mse_loss, gdl_loss, gan_loss, lam_gan, max_grad_norm, train_flag = False)
val_EpochAveMeter.iter_update(iter_loss_dict)
val_ave_meters = [None for i in range(world_size)]
dist.all_gather_object(val_ave_meters, val_EpochAveMeter)
if rank == 0:
val_meter = gather_AverageMeters(val_ave_meters)
loss_dict = val_meter.epoch_update(loss_dict, epoch, train_flag = False)
write_summary(summary_writer, loss_dict, train_flag = False)
if epoch % show_example_epochs == 0 or epoch == 1:
FAR_show_sample(VPTR_Enc, VPTR_Dec, VPTR_Transformer, num_future_frames, sample, ckpt_save_dir.joinpath(f'val_gifs_epoch{epoch}'), rank, renorm_transform, test_phase = True)
if epoch % save_ckpt_epochs == 0:
save_ckpt({'VPTR_Transformer': VPTR_Transformer},
{'optimizer_T': optimizer_T}, epoch, loss_dict, ckpt_save_dir)
epoch_time = datetime.now() - epoch_st
logging.info(f"epoch {epoch}, {val_meter.meters['T_total'].avg}")
logging.info(f"Estimated remaining training time: {epoch_time.total_seconds()/3600. * (start_epoch + epochs - epoch)} Hours")
cleanup()
if __name__ == '__main__':
set_seed(3407)
args = parser.parse_args()
ckpt_save_dir = Path('/home/travail/xiyex/VPTR_ckpts/BAIR_FAR_MSEGDL_RPE_mp_ckpt')
tensorboard_save_dir = Path('/home/travail/xiyex/VPTR_ckpts/BAIR_FAR_MSEGDL_RPE_mp_tensorboard')
resume_AE_ckpt = Path('/home/travail/xiyex/VPTR_ckpts/BAIR_ResNetAE_MSEGDL_ckpt').joinpath('epoch_64.tar')
#resume_Transformer_ckpt = ckpt_save_dir.joinpath('epoch_128.tar')
resume_Transformer_ckpt = None
data_set_name = 'BAIR'
out_layer = 'Tanh'
data_set_dir = '/home/travail/xiyex/BAIR'
dev_set_size = 500
padding_type = 'zero'
num_past_frames = 2
num_future_frames = 10
encH, encW, encC = 8, 8, 528
img_channels = 3
epochs = 30
batch_size = 16*4
num_encoder_layers = 12
#AE_lr = 2e-4
Transformer_lr = 1e-4
max_grad_norm = 1.0
rpe = True
lam_gan = 0.001
dropout = 0.1
init_Disc = False
train_Disc = False
num_workers = 4
world_size = 4
show_example_epochs = 10
save_ckpt_epochs = 2
print("Start training....")
print(ckpt_save_dir)
mp.spawn(main_worker,
args=(args, world_size, img_channels, encC, encH, encW, dropout, out_layer, rpe, Transformer_lr, max_grad_norm, lam_gan, resume_AE_ckpt,
data_set_name, batch_size, data_set_dir, dev_set_size, epochs, ckpt_save_dir, tensorboard_save_dir,
resume_Transformer_ckpt, num_encoder_layers, num_past_frames,
num_future_frames, init_Disc, train_Disc,
num_workers, show_example_epochs, save_ckpt_epochs, padding_type),
nprocs=world_size)