-
Notifications
You must be signed in to change notification settings - Fork 20
/
train_AutoEncoder.py
194 lines (154 loc) · 8.67 KB
/
train_AutoEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
from pathlib import Path
import random
from datetime import datetime
from model import VPTREnc, VPTRDec, VPTRDisc, init_weights
from model import GDL, MSELoss, L1Loss, GANLoss
from utils import get_dataloader
from utils import VidCenterCrop, VidPad, VidResize, VidNormalize, VidReNormalize, VidCrop, VidRandomHorizontalFlip, VidRandomVerticalFlip, VidToTensor
from utils import visualize_batch_clips, save_ckpt, load_ckpt, set_seed, AverageMeters, init_loss_dict, write_summary, resume_training
from utils import set_seed
set_seed(2021)
def cal_lossD(VPTR_Disc, fake_imgs, real_imgs, lam_gan):
pred_fake = VPTR_Disc(fake_imgs.detach().flatten(0, 1))
loss_D_fake = gan_loss(pred_fake, False)
# Real
pred_real = VPTR_Disc(real_imgs.flatten(0,1))
loss_D_real = gan_loss(pred_real, True)
# combine loss and calculate gradients
loss_D = (loss_D_fake + loss_D_real) * 0.5 * lam_gan
return loss_D, loss_D_fake, loss_D_real
def cal_lossG(VPTR_Disc, fake_imgs, real_imgs, lam_gan):
pred_fake = VPTR_Disc(fake_imgs.flatten(0, 1))
loss_G_gan = gan_loss(pred_fake, True)
AE_MSE_loss = mse_loss(fake_imgs, real_imgs)
AE_GDL_loss = gdl_loss(real_imgs, fake_imgs)
#AE_L1_loss = l1_loss(fake_imgs, real_imgs)
loss_G = lam_gan * loss_G_gan + AE_MSE_loss + AE_GDL_loss
return loss_G, loss_G_gan, AE_MSE_loss, AE_GDL_loss
def single_iter(VPTR_Enc, VPTR_Dec, VPTR_Disc, optimizer_G, optimizer_D, sample, device, train_flag = True):
past_frames, future_frames = sample
past_frames = past_frames.to(device)
future_frames = future_frames.to(device)
x = torch.cat([past_frames, future_frames], dim = 1)
if train_flag:
VPTR_Enc = VPTR_Enc.train()
VPTR_Enc.zero_grad()
VPTR_Dec = VPTR_Dec.train()
VPTR_Dec.zero_grad()
rec_frames = VPTR_Dec(VPTR_Enc(x))
#update discriminator
VPTR_Disc = VPTR_Disc.train()
for p in VPTR_Disc.parameters():
p.requires_grad_(True)
VPTR_Disc.zero_grad(set_to_none=True)
loss_D, loss_D_fake, loss_D_real = cal_lossD(VPTR_Disc, rec_frames, x, lam_gan)
loss_D.backward()
optimizer_D.step()
#update autoencoder (generator)
for p in VPTR_Disc.parameters():
p.requires_grad_(False)
loss_G, loss_G_gan, AE_MSE_loss, AE_GDL_loss = cal_lossG(VPTR_Disc, rec_frames, x, lam_gan)
loss_G.backward()
optimizer_G.step()
else:
VPTR_Enc = VPTR_Enc.eval()
VPTR_Dec = VPTR_Dec.eval()
VPTR_Disc = VPTR_Disc.eval()
with torch.no_grad():
rec_frames = VPTR_Dec(VPTR_Enc(x))
loss_D, loss_D_fake, loss_D_real = cal_lossD(VPTR_Disc, rec_frames, x, lam_gan)
loss_G, loss_G_gan, AE_MSE_loss, AE_GDL_loss = cal_lossG(VPTR_Disc, rec_frames, x, lam_gan)
iter_loss_dict = {'AEgan': loss_G_gan.item(), 'AE_MSE': AE_MSE_loss.item(), 'AE_GDL': AE_GDL_loss.item(), 'AE_total': loss_G.item(), 'Dtotal': loss_D.item(), 'Dfake':loss_D_fake.item(), 'Dreal':loss_D_real.item()}
return iter_loss_dict
def show_samples(VPTR_Enc, VPTR_Dec, sample, save_dir, renorm_transform):
VPTR_Enc = VPTR_Enc.eval()
VPTR_Dec = VPTR_Dec.eval()
with torch.no_grad():
past_frames, future_frames = sample
past_frames = past_frames.to(device)
future_frames = future_frames.to(device)
past_gt_feats = VPTR_Enc(past_frames)
future_gt_feats = VPTR_Enc(future_frames)
rec_past_frames = VPTR_Dec(past_gt_feats)
rec_future_frames = VPTR_Dec(future_gt_feats)
N = future_frames.shape[0]
idx = min(N, 4)
visualize_batch_clips(past_frames[0:idx, :, ...], rec_future_frames[0:idx, :, ...], rec_past_frames[0:idx, :, ...], save_dir, renorm_transform, desc = 'ae')
if __name__ == '__main__':
ckpt_save_dir = Path('/home/travail/xiyex/VPTR_ckpts/MNIST_ResNetAE_MSEGDLgan_ckpt')
tensorboard_save_dir = Path('/home/travail/xiyex/VPTR_ckpts/MNIST_ResNetAE_MSEGDLgan_tensorboard')
#resume_ckpt = ckpt_save_dir.joinpath('epoch_45.tar')
resume_ckpt = None
start_epoch = 0
summary_writer = SummaryWriter(tensorboard_save_dir.absolute().as_posix())
num_past_frames = 10
num_future_frames = 10
encH, encW, encC = 8, 8, 528
img_channels = 1 #3 channels for BAIR datset
epochs = 50
N = 32
AE_lr = 2e-4
lam_gan = 0.01
device = torch.device('cuda:0')
#####################Init Dataset ###########################
data_set_name = 'KTH' #see utils.dataset
dataset_dir = '/home/travail/xiyex/KTH'
train_loader, val_loader, test_loader, renorm_transform = get_dataloader(data_set_name, N, dataset_dir, num_past_frames, num_future_frames)
#####################Init Models and Optimizer ###########################
VPTR_Enc = VPTREnc(img_channels, feat_dim = encC, n_downsampling = 3).to(device)
VPTR_Dec = VPTRDec(img_channels, feat_dim = encC, n_downsampling = 3, out_layer = 'Tanh').to(device) #Sigmoid for MNIST, Tanh for KTH and BAIR
VPTR_Disc = VPTRDisc(img_channels, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d).to(device)
init_weights(VPTR_Disc)
init_weights(VPTR_Enc)
init_weights(VPTR_Dec)
optimizer_G = torch.optim.Adam(params = list(VPTR_Enc.parameters()) + list(VPTR_Dec.parameters()), lr=AE_lr, betas = (0.5, 0.999))
optimizer_D = torch.optim.Adam(params = VPTR_Disc.parameters(), lr=AE_lr, betas = (0.5, 0.999))
Enc_parameters = sum(p.numel() for p in VPTR_Enc.parameters() if p.requires_grad)
Dec_parameters = sum(p.numel() for p in VPTR_Dec.parameters() if p.requires_grad)
Disc_parameters = sum(p.numel() for p in VPTR_Disc.parameters() if p.requires_grad)
print(f"Encoder num_parameters: {Enc_parameters}")
print(f"Decoder num_parameters: {Dec_parameters}")
print(f"Discriminator num_parameters: {Disc_parameters}")
#####################Init Criterion ###########################
loss_name_list = ['AE_MSE', 'AE_GDL', 'AE_total', 'Dtotal', 'Dfake', 'Dreal', 'AEgan']
gan_loss = GANLoss('vanilla', target_real_label=1.0, target_fake_label=0.0).to(device)
loss_dict = init_loss_dict(loss_name_list)
mse_loss = MSELoss()
gdl_loss = GDL(alpha = 1)
if resume_ckpt is not None:
loss_dict, start_epoch = resume_training({'VPTR_Enc': VPTR_Enc, 'VPTR_Dec': VPTR_Dec, 'VPTR_Disc': VPTR_Disc},
{'optimizer_G': optimizer_G, 'optimizer_D': optimizer_D},
loss_name_list, resume_ckpt)
#####################Training loop ###########################
for epoch in range(start_epoch+1, start_epoch + epochs+1):
epoch_st = datetime.now()
#Train
EpochAveMeter = AverageMeters(loss_name_list)
for idx, sample in enumerate(train_loader, 0):
iter_loss_dict = single_iter(VPTR_Enc, VPTR_Dec, VPTR_Disc, optimizer_G, optimizer_D, sample, device, train_flag = True)
EpochAveMeter.iter_update(iter_loss_dict)
loss_dict = EpochAveMeter.epoch_update(loss_dict, epoch, train_flag = True)
write_summary(summary_writer, loss_dict, train_flag = True)
show_samples(VPTR_Enc, VPTR_Dec, sample, ckpt_save_dir.joinpath(f'train_gifs_epoch{epoch}'), renorm_transform)
#validation
EpochAveMeter = AverageMeters(loss_name_list)
for idx, sample in enumerate(val_loader, 0):
iter_loss_dict = single_iter(VPTR_Enc, VPTR_Dec, VPTR_Disc, optimizer_G, optimizer_D, sample, device, train_flag = False)
EpochAveMeter.iter_update(iter_loss_dict)
loss_dict = EpochAveMeter.epoch_update(loss_dict, epoch, train_flag = False)
write_summary(summary_writer, loss_dict, train_flag = False)
save_ckpt({'VPTR_Enc': VPTR_Enc, 'VPTR_Dec': VPTR_Dec, 'VPTR_Disc': VPTR_Disc},
{'optimizer_G': optimizer_G, 'optimizer_D': optimizer_D},
epoch, loss_dict, ckpt_save_dir)
for idx, sample in enumerate(test_loader, random.randint(0, len(test_loader) - 1)):
show_samples(VPTR_Enc, VPTR_Dec, sample, ckpt_save_dir.joinpath(f'test_gifs_epoch{epoch}'), renorm_transform)
break
epoch_time = datetime.now() - epoch_st
print(f'epoch {epoch}', EpochAveMeter.meters['AE_total'])
print(f"Estimated remaining training time: {epoch_time.total_seconds()/3600. * (start_epoch + epochs - epoch)} Hours")