forked from capstone-engine/capstone
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cs.c
1122 lines (946 loc) · 26.6 KB
/
cs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <[email protected]>, 2013-2014 */
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996) // disable MSVC's warning on strcpy()
#pragma warning(disable:28719) // disable MSVC's warning on strcpy()
#endif
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#endif
#include <string.h>
#include <capstone.h>
#include "utils.h"
#include "MCRegisterInfo.h"
#if defined(_KERNEL_MODE)
#include "windows\winkernel_mm.h"
#endif
// Issue #681: Windows kernel does not support formatting float point
#if defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET)
#if defined(CAPSTONE_HAS_ARM) || defined(CAPSTONE_HAS_ARM64)
#define CAPSTONE_STR_INTERNAL(x) #x
#define CAPSTONE_STR(x) CAPSTONE_STR_INTERNAL(x)
#define CAPSTONE_MSVC_WRANING_PREFIX __FILE__ "("CAPSTONE_STR(__LINE__)") : warning message : "
#pragma message(CAPSTONE_MSVC_WRANING_PREFIX "Windows driver does not support full features for selected architecture(s). Define CAPSTONE_DIET to compile Capstone with only supported features. See issue #681 for details.")
#undef CAPSTONE_MSVC_WRANING_PREFIX
#undef CAPSTONE_STR
#undef CAPSTONE_STR_INTERNAL
#endif
#endif // defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET)
#if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(CAPSTONE_DIET) && !defined(_KERNEL_MODE)
#define INSN_CACHE_SIZE 32
#else
// reduce stack variable size for kernel/firmware
#define INSN_CACHE_SIZE 8
#endif
// default SKIPDATA mnemonic
#ifndef CAPSTONE_DIET
#define SKIPDATA_MNEM ".byte"
#else // No printing is available in diet mode
#define SKIPDATA_MNEM NULL
#endif
cs_err (*arch_init[MAX_ARCH])(cs_struct *) = { NULL };
cs_err (*arch_option[MAX_ARCH]) (cs_struct *, cs_opt_type, size_t value) = { NULL };
void (*arch_destroy[MAX_ARCH]) (cs_struct *) = { NULL };
extern void ARM_enable(void);
extern void AArch64_enable(void);
extern void Mips_enable(void);
extern void X86_enable(void);
extern void PPC_enable(void);
extern void Sparc_enable(void);
extern void SystemZ_enable(void);
extern void XCore_enable(void);
static void archs_enable(void)
{
static bool initialized = false;
if (initialized)
return;
#ifdef CAPSTONE_HAS_ARM
ARM_enable();
#endif
#ifdef CAPSTONE_HAS_ARM64
AArch64_enable();
#endif
#ifdef CAPSTONE_HAS_MIPS
Mips_enable();
#endif
#ifdef CAPSTONE_HAS_POWERPC
PPC_enable();
#endif
#ifdef CAPSTONE_HAS_SPARC
Sparc_enable();
#endif
#ifdef CAPSTONE_HAS_SYSZ
SystemZ_enable();
#endif
#ifdef CAPSTONE_HAS_X86
X86_enable();
#endif
#ifdef CAPSTONE_HAS_XCORE
XCore_enable();
#endif
initialized = true;
}
unsigned int all_arch = 0;
#if defined(CAPSTONE_USE_SYS_DYN_MEM)
#if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(_KERNEL_MODE)
cs_malloc_t cs_mem_malloc = malloc;
cs_calloc_t cs_mem_calloc = calloc;
cs_realloc_t cs_mem_realloc = realloc;
cs_free_t cs_mem_free = free;
cs_vsnprintf_t cs_vsnprintf = vsnprintf;
#elif defined(_KERNEL_MODE)
cs_malloc_t cs_mem_malloc = cs_winkernel_malloc;
cs_calloc_t cs_mem_calloc = cs_winkernel_calloc;
cs_realloc_t cs_mem_realloc = cs_winkernel_realloc;
cs_free_t cs_mem_free = cs_winkernel_free;
cs_vsnprintf_t cs_vsnprintf = cs_winkernel_vsnprintf;
#else
extern void* kern_os_malloc(size_t size);
extern void kern_os_free(void* addr);
extern void* kern_os_realloc(void* addr, size_t nsize);
static void* cs_kern_os_calloc(size_t num, size_t size)
{
return kern_os_malloc(num * size); // malloc bzeroes the buffer
}
cs_malloc_t cs_mem_malloc = kern_os_malloc;
cs_calloc_t cs_mem_calloc = cs_kern_os_calloc;
cs_realloc_t cs_mem_realloc = kern_os_realloc;
cs_free_t cs_mem_free = kern_os_free;
cs_vsnprintf_t cs_vsnprintf = vsnprintf;
#endif
#else
cs_malloc_t cs_mem_malloc = NULL;
cs_calloc_t cs_mem_calloc = NULL;
cs_realloc_t cs_mem_realloc = NULL;
cs_free_t cs_mem_free = NULL;
cs_vsnprintf_t cs_vsnprintf = NULL;
#endif
CAPSTONE_EXPORT
unsigned int CAPSTONE_API cs_version(int *major, int *minor)
{
archs_enable();
if (major != NULL && minor != NULL) {
*major = CS_API_MAJOR;
*minor = CS_API_MINOR;
}
return (CS_API_MAJOR << 8) + CS_API_MINOR;
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_support(int query)
{
archs_enable();
if (query == CS_ARCH_ALL)
return all_arch == ((1 << CS_ARCH_ARM) | (1 << CS_ARCH_ARM64) |
(1 << CS_ARCH_MIPS) | (1 << CS_ARCH_X86) |
(1 << CS_ARCH_PPC) | (1 << CS_ARCH_SPARC) |
(1 << CS_ARCH_SYSZ) | (1 << CS_ARCH_XCORE));
if ((unsigned int)query < CS_ARCH_MAX)
return all_arch & (1 << query);
if (query == CS_SUPPORT_DIET) {
#ifdef CAPSTONE_DIET
return true;
#else
return false;
#endif
}
if (query == CS_SUPPORT_X86_REDUCE) {
#if defined(CAPSTONE_HAS_X86) && defined(CAPSTONE_X86_REDUCE)
return true;
#else
return false;
#endif
}
// unsupported query
return false;
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_errno(csh handle)
{
struct cs_struct *ud;
if (!handle)
return CS_ERR_CSH;
ud = (struct cs_struct *)(uintptr_t)handle;
return ud->errnum;
}
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_strerror(cs_err code)
{
switch(code) {
default:
return "Unknown error code";
case CS_ERR_OK:
return "OK (CS_ERR_OK)";
case CS_ERR_MEM:
return "Out of memory (CS_ERR_MEM)";
case CS_ERR_ARCH:
return "Invalid architecture (CS_ERR_ARCH)";
case CS_ERR_HANDLE:
return "Invalid handle (CS_ERR_HANDLE)";
case CS_ERR_CSH:
return "Invalid csh (CS_ERR_CSH)";
case CS_ERR_MODE:
return "Invalid mode (CS_ERR_MODE)";
case CS_ERR_OPTION:
return "Invalid option (CS_ERR_OPTION)";
case CS_ERR_DETAIL:
return "Details are unavailable (CS_ERR_DETAIL)";
case CS_ERR_MEMSETUP:
return "Dynamic memory management uninitialized (CS_ERR_MEMSETUP)";
case CS_ERR_VERSION:
return "Different API version between core & binding (CS_ERR_VERSION)";
case CS_ERR_DIET:
return "Information irrelevant in diet engine (CS_ERR_DIET)";
case CS_ERR_SKIPDATA:
return "Information irrelevant for 'data' instruction in SKIPDATA mode (CS_ERR_SKIPDATA)";
}
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_open(cs_arch arch, cs_mode mode, csh *handle)
{
cs_err err;
struct cs_struct *ud;
if (!cs_mem_malloc || !cs_mem_calloc || !cs_mem_realloc || !cs_mem_free || !cs_vsnprintf)
// Error: before cs_open(), dynamic memory management must be initialized
// with cs_option(CS_OPT_MEM)
return CS_ERR_MEMSETUP;
archs_enable();
if (arch < CS_ARCH_MAX && arch_init[arch]) {
ud = cs_mem_calloc(1, sizeof(*ud));
if (!ud) {
// memory insufficient
return CS_ERR_MEM;
}
ud->errnum = CS_ERR_OK;
ud->arch = arch;
ud->mode = mode;
ud->big_endian = (mode & CS_MODE_BIG_ENDIAN) != 0;
// by default, do not break instruction into details
ud->detail = CS_OPT_OFF;
// default skipdata setup
ud->skipdata_setup.mnemonic = SKIPDATA_MNEM;
err = arch_init[ud->arch](ud);
if (err) {
cs_mem_free(ud);
*handle = 0;
return err;
}
*handle = (uintptr_t)ud;
return CS_ERR_OK;
} else {
*handle = 0;
return CS_ERR_ARCH;
}
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_close(csh *handle)
{
struct cs_struct *ud;
if (*handle == 0)
// invalid handle
return CS_ERR_CSH;
ud = (struct cs_struct *)(*handle);
if (ud->printer_info)
cs_mem_free(ud->printer_info);
cs_mem_free(ud->insn_cache);
memset(ud, 0, sizeof(*ud));
cs_mem_free(ud);
// invalidate this handle by ZERO out its value.
// this is to make sure it is unusable after cs_close()
*handle = 0;
return CS_ERR_OK;
}
// fill insn with mnemonic & operands info
static void fill_insn(struct cs_struct *handle, cs_insn *insn, char *buffer, MCInst *mci,
PostPrinter_t postprinter, const uint8_t *code)
{
#ifndef CAPSTONE_DIET
char *sp, *mnem;
#endif
uint16_t copy_size = MIN(sizeof(insn->bytes), insn->size);
// fill the instruction bytes.
// we might skip some redundant bytes in front in the case of X86
memcpy(insn->bytes, code + insn->size - copy_size, copy_size);
insn->size = copy_size;
// alias instruction might have ID saved in OpcodePub
if (MCInst_getOpcodePub(mci))
insn->id = MCInst_getOpcodePub(mci);
// post printer handles some corner cases (hacky)
if (postprinter)
postprinter((csh)handle, insn, buffer, mci);
#ifndef CAPSTONE_DIET
// fill in mnemonic & operands
// find first space or tab
mnem = insn->mnemonic;
for (sp = buffer; *sp; sp++) {
if (*sp == ' '|| *sp == '\t')
break;
if (*sp == '|') // lock|rep prefix for x86
*sp = ' ';
// copy to @mnemonic
*mnem = *sp;
mnem++;
}
*mnem = '\0';
// copy @op_str
if (*sp) {
// find the next non-space char
sp++;
for (; ((*sp == ' ') || (*sp == '\t')); sp++);
strncpy(insn->op_str, sp, sizeof(insn->op_str) - 1);
insn->op_str[sizeof(insn->op_str) - 1] = '\0';
} else
insn->op_str[0] = '\0';
#endif
}
// how many bytes will we skip when encountering data (CS_OPT_SKIPDATA)?
// this very much depends on instruction alignment requirement of each arch.
static uint8_t skipdata_size(cs_struct *handle)
{
switch(handle->arch) {
default:
// should never reach
return (uint8_t)-1;
case CS_ARCH_ARM:
// skip 2 bytes on Thumb mode.
if (handle->mode & CS_MODE_THUMB)
return 2;
// otherwise, skip 4 bytes
return 4;
case CS_ARCH_ARM64:
case CS_ARCH_MIPS:
case CS_ARCH_PPC:
case CS_ARCH_SPARC:
// skip 4 bytes
return 4;
case CS_ARCH_SYSZ:
// SystemZ instruction's length can be 2, 4 or 6 bytes,
// so we just skip 2 bytes
return 2;
case CS_ARCH_X86:
// X86 has no restriction on instruction alignment
return 1;
case CS_ARCH_XCORE:
// XCore instruction's length can be 2 or 4 bytes,
// so we just skip 2 bytes
return 2;
}
}
CAPSTONE_EXPORT
cs_err CAPSTONE_API cs_option(csh ud, cs_opt_type type, size_t value)
{
struct cs_struct *handle;
archs_enable();
// cs_option() can be called with NULL handle just for CS_OPT_MEM
// This is supposed to be executed before all other APIs (even cs_open())
if (type == CS_OPT_MEM) {
cs_opt_mem *mem = (cs_opt_mem *)value;
cs_mem_malloc = mem->malloc;
cs_mem_calloc = mem->calloc;
cs_mem_realloc = mem->realloc;
cs_mem_free = mem->free;
cs_vsnprintf = mem->vsnprintf;
return CS_ERR_OK;
}
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle)
return CS_ERR_CSH;
switch(type) {
default:
break;
case CS_OPT_DETAIL:
handle->detail = (cs_opt_value)value;
return CS_ERR_OK;
case CS_OPT_SKIPDATA:
handle->skipdata = (value == CS_OPT_ON);
if (handle->skipdata) {
if (handle->skipdata_size == 0) {
// set the default skipdata size
handle->skipdata_size = skipdata_size(handle);
}
}
return CS_ERR_OK;
case CS_OPT_SKIPDATA_SETUP:
if (value)
handle->skipdata_setup = *((cs_opt_skipdata *)value);
return CS_ERR_OK;
}
return arch_option[handle->arch](handle, type, value);
}
// generate @op_str for data instruction of SKIPDATA
#ifndef CAPSTONE_DIET
static void skipdata_opstr(char *opstr, const uint8_t *buffer, size_t size)
{
char *p = opstr;
int len;
size_t i;
size_t available = sizeof(((cs_insn*)NULL)->op_str);
if (!size) {
opstr[0] = '\0';
return;
}
len = cs_snprintf(p, available, "0x%02x", buffer[0]);
p+= len;
available -= len;
for(i = 1; i < size; i++) {
len = cs_snprintf(p, available, ", 0x%02x", buffer[i]);
if (len < 0) {
break;
}
if ((size_t)len > available - 1) {
break;
}
p+= len;
available -= len;
}
}
#endif
// dynamicly allocate memory to contain disasm insn
// NOTE: caller must free() the allocated memory itself to avoid memory leaking
CAPSTONE_EXPORT
size_t CAPSTONE_API cs_disasm(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn)
{
struct cs_struct *handle;
MCInst mci;
uint16_t insn_size;
size_t c = 0, i;
unsigned int f = 0; // index of the next instruction in the cache
cs_insn *insn_cache; // cache contains disassembled instructions
void *total = NULL;
size_t total_size = 0; // total size of output buffer containing all insns
bool r;
void *tmp;
size_t skipdata_bytes;
uint64_t offset_org; // save all the original info of the buffer
size_t size_org;
const uint8_t *buffer_org;
unsigned int cache_size = INSN_CACHE_SIZE;
size_t next_offset;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle) {
// FIXME: how to handle this case:
// handle->errnum = CS_ERR_HANDLE;
return 0;
}
handle->errnum = CS_ERR_OK;
// reset IT block of ARM structure
if (handle->arch == CS_ARCH_ARM)
handle->ITBlock.size = 0;
#ifdef CAPSTONE_USE_SYS_DYN_MEM
if (count > 0 && count <= INSN_CACHE_SIZE)
cache_size = (unsigned int) count;
#endif
// save the original offset for SKIPDATA
buffer_org = buffer;
offset_org = offset;
size_org = size;
total_size = sizeof(cs_insn) * cache_size;
total = cs_mem_malloc(total_size);
if (total == NULL) {
// insufficient memory
handle->errnum = CS_ERR_MEM;
return 0;
}
insn_cache = total;
while (size > 0) {
MCInst_Init(&mci);
mci.csh = handle;
// relative branches need to know the address & size of current insn
mci.address = offset;
if (handle->detail) {
// allocate memory for @detail pointer
insn_cache->detail = cs_mem_malloc(sizeof(cs_detail));
} else {
insn_cache->detail = NULL;
}
// save all the information for non-detailed mode
mci.flat_insn = insn_cache;
mci.flat_insn->address = offset;
#ifdef CAPSTONE_DIET
// zero out mnemonic & op_str
mci.flat_insn->mnemonic[0] = '\0';
mci.flat_insn->op_str[0] = '\0';
#endif
r = handle->disasm(ud, buffer, size, &mci, &insn_size, offset, handle->getinsn_info);
if (r) {
SStream ss;
SStream_Init(&ss);
mci.flat_insn->size = insn_size;
// map internal instruction opcode to public insn ID
handle->insn_id(handle, insn_cache, mci.Opcode);
handle->printer(&mci, &ss, handle->printer_info);
fill_insn(handle, insn_cache, ss.buffer, &mci, handle->post_printer, buffer);
next_offset = insn_size;
} else {
// encounter a broken instruction
// free memory of @detail pointer
if (handle->detail) {
cs_mem_free(insn_cache->detail);
}
// if there is no request to skip data, or remaining data is too small,
// then bail out
if (!handle->skipdata || handle->skipdata_size > size)
break;
if (handle->skipdata_setup.callback) {
skipdata_bytes = handle->skipdata_setup.callback(buffer_org, size_org,
(size_t)(offset - offset_org), handle->skipdata_setup.user_data);
if (skipdata_bytes > size)
// remaining data is not enough
break;
if (!skipdata_bytes)
// user requested not to skip data, so bail out
break;
} else
skipdata_bytes = handle->skipdata_size;
// we have to skip some amount of data, depending on arch & mode
insn_cache->id = 0; // invalid ID for this "data" instruction
insn_cache->address = offset;
insn_cache->size = (uint16_t)skipdata_bytes;
memcpy(insn_cache->bytes, buffer, skipdata_bytes);
#ifdef CAPSTONE_DIET
insn_cache->mnemonic[0] = '\0';
insn_cache->op_str[0] = '\0';
#else
strncpy(insn_cache->mnemonic, handle->skipdata_setup.mnemonic,
sizeof(insn_cache->mnemonic) - 1);
skipdata_opstr(insn_cache->op_str, buffer, skipdata_bytes);
#endif
insn_cache->detail = NULL;
next_offset = skipdata_bytes;
}
// one more instruction entering the cache
f++;
// one more instruction disassembled
c++;
if (count > 0 && c == count)
// already got requested number of instructions
break;
if (f == cache_size) {
// full cache, so expand the cache to contain incoming insns
cache_size = cache_size * 8 / 5; // * 1.6 ~ golden ratio
total_size += (sizeof(cs_insn) * cache_size);
tmp = cs_mem_realloc(total, total_size);
if (tmp == NULL) { // insufficient memory
if (handle->detail) {
insn_cache = (cs_insn *)total;
for (i = 0; i < c; i++, insn_cache++)
cs_mem_free(insn_cache->detail);
}
cs_mem_free(total);
*insn = NULL;
handle->errnum = CS_ERR_MEM;
return 0;
}
total = tmp;
// continue to fill in the cache after the last instruction
insn_cache = (cs_insn *)((char *)total + sizeof(cs_insn) * c);
// reset f back to 0, so we fill in the cache from begining
f = 0;
} else
insn_cache++;
buffer += next_offset;
size -= next_offset;
offset += next_offset;
}
if (!c) {
// we did not disassemble any instruction
cs_mem_free(total);
total = NULL;
} else if (f != cache_size) {
// total did not fully use the last cache, so downsize it
tmp = cs_mem_realloc(total, total_size - (cache_size - f) * sizeof(*insn_cache));
if (tmp == NULL) { // insufficient memory
// free all detail pointers
if (handle->detail) {
insn_cache = (cs_insn *)total;
for (i = 0; i < c; i++, insn_cache++)
cs_mem_free(insn_cache->detail);
}
cs_mem_free(total);
*insn = NULL;
handle->errnum = CS_ERR_MEM;
return 0;
}
total = tmp;
}
*insn = total;
return c;
}
CAPSTONE_EXPORT
CAPSTONE_DEPRECATED
size_t CAPSTONE_API cs_disasm_ex(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn)
{
return cs_disasm(ud, buffer, size, offset, count, insn);
}
CAPSTONE_EXPORT
void CAPSTONE_API cs_free(cs_insn *insn, size_t count)
{
size_t i;
// free all detail pointers
for (i = 0; i < count; i++)
cs_mem_free(insn[i].detail);
// then free pointer to cs_insn array
cs_mem_free(insn);
}
CAPSTONE_EXPORT
cs_insn * CAPSTONE_API cs_malloc(csh ud)
{
cs_insn *insn;
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
insn = cs_mem_malloc(sizeof(cs_insn));
if (!insn) {
// insufficient memory
handle->errnum = CS_ERR_MEM;
return NULL;
} else {
if (handle->detail) {
// allocate memory for @detail pointer
insn->detail = cs_mem_malloc(sizeof(cs_detail));
if (insn->detail == NULL) { // insufficient memory
cs_mem_free(insn);
handle->errnum = CS_ERR_MEM;
return NULL;
}
} else
insn->detail = NULL;
}
return insn;
}
// iterator for instruction "single-stepping"
CAPSTONE_EXPORT
bool CAPSTONE_API cs_disasm_iter(csh ud, const uint8_t **code, size_t *size,
uint64_t *address, cs_insn *insn)
{
struct cs_struct *handle;
uint16_t insn_size;
MCInst mci;
bool r;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle) {
return false;
}
handle->errnum = CS_ERR_OK;
MCInst_Init(&mci);
mci.csh = handle;
// relative branches need to know the address & size of current insn
mci.address = *address;
// save all the information for non-detailed mode
mci.flat_insn = insn;
mci.flat_insn->address = *address;
#ifdef CAPSTONE_DIET
// zero out mnemonic & op_str
mci.flat_insn->mnemonic[0] = '\0';
mci.flat_insn->op_str[0] = '\0';
#endif
r = handle->disasm(ud, *code, *size, &mci, &insn_size, *address, handle->getinsn_info);
if (r) {
SStream ss;
SStream_Init(&ss);
mci.flat_insn->size = insn_size;
// map internal instruction opcode to public insn ID
handle->insn_id(handle, insn, mci.Opcode);
handle->printer(&mci, &ss, handle->printer_info);
fill_insn(handle, insn, ss.buffer, &mci, handle->post_printer, *code);
*code += insn_size;
*size -= insn_size;
*address += insn_size;
} else { // encounter a broken instruction
size_t skipdata_bytes;
// if there is no request to skip data, or remaining data is too small,
// then bail out
if (!handle->skipdata || handle->skipdata_size > *size)
return false;
if (handle->skipdata_setup.callback) {
skipdata_bytes = handle->skipdata_setup.callback(*code, *size,
0, handle->skipdata_setup.user_data);
if (skipdata_bytes > *size)
// remaining data is not enough
return false;
if (!skipdata_bytes)
// user requested not to skip data, so bail out
return false;
} else
skipdata_bytes = handle->skipdata_size;
// we have to skip some amount of data, depending on arch & mode
insn->id = 0; // invalid ID for this "data" instruction
insn->address = *address;
insn->size = (uint16_t)skipdata_bytes;
memcpy(insn->bytes, *code, skipdata_bytes);
#ifdef CAPSTONE_DIET
insn->mnemonic[0] = '\0';
insn->op_str[0] = '\0';
#else
strncpy(insn->mnemonic, handle->skipdata_setup.mnemonic,
sizeof(insn->mnemonic) - 1);
skipdata_opstr(insn->op_str, *code, skipdata_bytes);
#endif
*code += skipdata_bytes;
*size -= skipdata_bytes;
*address += skipdata_bytes;
}
return true;
}
// return friendly name of regiser in a string
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_reg_name(csh ud, unsigned int reg)
{
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle || handle->reg_name == NULL) {
return NULL;
}
return handle->reg_name(ud, reg);
}
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_insn_name(csh ud, unsigned int insn)
{
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle || handle->insn_name == NULL) {
return NULL;
}
return handle->insn_name(ud, insn);
}
CAPSTONE_EXPORT
const char * CAPSTONE_API cs_group_name(csh ud, unsigned int group)
{
struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle || handle->group_name == NULL) {
return NULL;
}
return handle->group_name(ud, group);
}
static bool arr_exist(unsigned char *arr, unsigned char max, unsigned int id)
{
int i;
for (i = 0; i < max; i++) {
if (arr[i] == id)
return true;
}
return false;
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_insn_group(csh ud, const cs_insn *insn, unsigned int group_id)
{
struct cs_struct *handle;
if (!ud)
return false;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
if(!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return false;
}
if(!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
return arr_exist(insn->detail->groups, insn->detail->groups_count, group_id);
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_reg_read(csh ud, const cs_insn *insn, unsigned int reg_id)
{
struct cs_struct *handle;
if (!ud)
return false;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
if(!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return false;
}
if(!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
return arr_exist(insn->detail->regs_read, insn->detail->regs_read_count, reg_id);
}
CAPSTONE_EXPORT
bool CAPSTONE_API cs_reg_write(csh ud, const cs_insn *insn, unsigned int reg_id)
{
struct cs_struct *handle;
if (!ud)
return false;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
if(!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return false;
}
if(!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return false;
}
return arr_exist(insn->detail->regs_write, insn->detail->regs_write_count, reg_id);
}
CAPSTONE_EXPORT
int CAPSTONE_API cs_op_count(csh ud, const cs_insn *insn, unsigned int op_type)
{
struct cs_struct *handle;
unsigned int count = 0, i;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
if(!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return -1;
}
if(!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
handle->errnum = CS_ERR_OK;
switch (handle->arch) {
default:
handle->errnum = CS_ERR_HANDLE;
return -1;
case CS_ARCH_ARM:
for (i = 0; i < insn->detail->arm.op_count; i++)
if (insn->detail->arm.operands[i].type == (arm_op_type)op_type)
count++;
break;
case CS_ARCH_ARM64:
for (i = 0; i < insn->detail->arm64.op_count; i++)
if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type)
count++;
break;
case CS_ARCH_X86:
for (i = 0; i < insn->detail->x86.op_count; i++)
if (insn->detail->x86.operands[i].type == (x86_op_type)op_type)
count++;
break;
case CS_ARCH_MIPS:
for (i = 0; i < insn->detail->mips.op_count; i++)
if (insn->detail->mips.operands[i].type == (mips_op_type)op_type)
count++;
break;
case CS_ARCH_PPC:
for (i = 0; i < insn->detail->ppc.op_count; i++)
if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type)