-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_nerf_helpers.py
757 lines (637 loc) · 29.6 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# -*- coding: utf-8 -*-
import torch
# torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.linalg import det
import os
import scipy.signal
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
''' Evaluation metrics (ssim, lpips)
'''
def rgb_ssim(img0, img1, max_val,
filter_size=11,
filter_sigma=1.5,
k1=0.01,
k2=0.03,
return_map=False):
# Modified from https://github.com/google/mipnerf/blob/16e73dfdb52044dcceb47cda5243a686391a6e0f/internal/math.py#L58
assert len(img0.shape) == 3
assert img0.shape[-1] == 3
assert img0.shape == img1.shape
# Construct a 1D Gaussian blur filter.
hw = filter_size // 2
shift = (2 * hw - filter_size + 1) / 2
f_i = ((np.arange(filter_size) - hw + shift) / filter_sigma)**2
filt = np.exp(-0.5 * f_i)
filt /= np.sum(filt)
# Blur in x and y (faster than the 2D convolution).
def convolve2d(z, f):
return scipy.signal.convolve2d(z, f, mode='valid')
# this_type_str = type(z)
# if this_type_str is np.ndarray:
# return scipy.signal.convolve2d(z, f, mode='valid')
# else:
# return scipy.signal.convolve2d(z.cpu(), f, mode='valid')
filt_fn = lambda z: np.stack([
convolve2d(convolve2d(z[...,i], filt[:, None]), filt[None, :])
for i in range(z.shape[-1])], -1)
mu0 = filt_fn(img0)
mu1 = filt_fn(img1)
mu00 = mu0 * mu0
mu11 = mu1 * mu1
mu01 = mu0 * mu1
sigma00 = filt_fn(img0**2) - mu00
sigma11 = filt_fn(img1**2) - mu11
sigma01 = filt_fn(img0 * img1) - mu01
# Clip the variances and covariances to valid values.
# Variance must be non-negative:
sigma00 = np.maximum(0., sigma00)
sigma11 = np.maximum(0., sigma11)
sigma01 = np.sign(sigma01) * np.minimum(
np.sqrt(sigma00 * sigma11), np.abs(sigma01))
c1 = (k1 * max_val)**2
c2 = (k2 * max_val)**2
numer = (2 * mu01 + c1) * (2 * sigma01 + c2)
denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2)
ssim_map = numer / denom
ssim = np.mean(ssim_map)
return ssim_map if return_map else ssim
__LPIPS__ = {}
def init_lpips(net_name, device):
assert net_name in ['alex', 'vgg']
import lpips
print(f'init_lpips: lpips_{net_name}')
return lpips.LPIPS(net=net_name, version='0.1').eval().to(device)
def rgb_lpips(np_gt, np_im, net_name, device):
if net_name not in __LPIPS__:
__LPIPS__[net_name] = init_lpips(net_name, device)
gt = torch.from_numpy(np_gt).permute([2, 0, 1]).contiguous().to(device)
im = torch.from_numpy(np_im).permute([2, 0, 1]).contiguous().to(device)
return __LPIPS__[net_name](gt, im, normalize=True).item()
def transform_pose_to_ref(ref_img_no, poses, i_test):
ref_r = poses[ref_img_no, :, :3] # [3, 3]
ref_t = poses[ref_img_no, :, 3].unsqueeze(-1) # [3, 1]
ref_r_inv = invmat(ref_r) # 求姿态的逆矩阵
trans_pose = []
for i in i_test:
loc_r = poses[i, :, :3] # [3, 3]
loc_t = poses[i, :, 3].unsqueeze(-1) # [3, 1]
trans_r = torch.matmul(ref_r_inv, loc_r) # [3, 3]
trans_t = torch.matmul(ref_r_inv, loc_t-ref_t) # [3, 1]
pose = torch.cat([trans_r, trans_t], 1) # [3, 4]
trans_pose.append(pose)
trans_pose = torch.stack(trans_pose, 0) # [n, 3, 4]
return trans_pose
def load_sift_correspondences(data_file):
if os.stat(data_file).st_size == 0:
return []
with open(data_file,'r') as in_file:
txt = in_file.readlines()
txt = [txt[i].split(' ') for i in range(len(txt))]
for i in range(len(txt)):
for j in range(len(txt[0])):
txt[i][j] = txt[i][j].strip('[\n,\t]')
txt[i][j] = float(txt[i][j])
return txt
def get_frm_no_in_set(valid_frames):
frm_no = []
for i in range(len(valid_frames)):
frm_no.append(valid_frames[i][0])
frm_no.append(valid_frames[i][1])
frm_no.append(valid_frames[i][2])
return list(set(frm_no))
def save_predicted_pose(file_name, poses):
with open(file_name, 'w') as f:
for m in range(poses.shape[0]):
for i in range(3):
for j in range(4):
if i ==2 and j==3:
f.write('%f' %(poses[m][i][j]))
else:
f.write('%f ' %(poses[m][i][j]))
f.write('\n')
# poses[img_inds[1], :3,:4]
def load_predicted_pose(data_file):
if not os.path.exists(data_file):
return []
if os.stat(data_file).st_size == 0:
return []
with open(data_file,'r') as in_file:
txt = in_file.readlines()
txt = [txt[i].split(' ') for i in range(len(txt))]
for i in range(len(txt)):
for j in range(len(txt[0])):
txt[i][j] = txt[i][j].strip('[\n,\t]')
txt[i][j] = float(txt[i][j])
poses = np.array(txt)
poses = np.reshape(poses, [-1, 3, 4]) # [n, 3, 4]
return poses
def get_training_frames(i_train, total_num, siftdir, factor, only_consective_frm = False, use_default_ref= False, input_ref_no = -1):
i_train.sort()
ref_img_no = i_train[0]
best_sift_num = 0
frm_num = 0
best_frm_list = []
best_valid_frames = []
if use_default_ref:
valid_frames, valid_sift_num = get_valid_frames(i_train, input_ref_no, total_num, siftdir, factor)
valid_frm_list = get_frm_no_in_set(valid_frames)
best_frm_list = valid_frm_list
best_valid_frames = valid_frames
ref_img_no = input_ref_no
else:
for i in i_train:
valid_frames, valid_sift_num = get_valid_frames(i_train, i, total_num, siftdir, factor)
valid_frm_list = get_frm_no_in_set(valid_frames)
if len(valid_frm_list) > frm_num or (len(valid_frm_list) == frm_num and valid_sift_num > best_sift_num):
best_sift_num = valid_sift_num
ref_img_no = i
best_frm_list = valid_frm_list
frm_num = len(valid_frm_list)
best_valid_frames = valid_frames
if only_consective_frm:
print("ref_img_no:{}\n".format(ref_img_no))
print("valid frame:\n")
for i in range(len(best_valid_frames)):
print("{},{},{}\n".format(best_valid_frames[i][0], best_valid_frames[i][1], best_valid_frames[i][2]))
return ref_img_no, best_valid_frames
invalid_frames_no = np.setdiff1d(i_train, best_frm_list)
new_valid_frams = []
for i in invalid_frames_no:
if i in new_valid_frams:
continue
index = i_train.tolist().index(i)
best_frames = []
valid_sift_num = 0
for j in best_frm_list:
if j == ref_img_no:
continue
for k in range(index):
if i_train[k] == ref_img_no or i_train[k] == j or j == i:
continue
sift_file = siftdir + 'sift_{:0>2d}_{:0>2d}_{:0>2d}_{:0>2d}.txt'.format(factor, j, i_train[k], i)
sift_correspondences = load_sift_correspondences(sift_file)
if len(sift_correspondences) > valid_sift_num:
best_frames = [ j, i_train[k], i]
valid_sift_num = len(sift_correspondences)
for k in range(index+1, len(i_train)):
if i_train[k] == ref_img_no or i_train[k] == j or j == i:
continue
sift_file = siftdir + 'sift_{:0>2d}_{:0>2d}_{:0>2d}_{:0>2d}.txt'.format(factor, j, i, i_train[k])
sift_correspondences = load_sift_correspondences(sift_file)
if len(sift_correspondences) > valid_sift_num:
best_frames = [ j, i, i_train[k]]
valid_sift_num = len(sift_correspondences)
if valid_sift_num > 3:
best_valid_frames.append(best_frames)
new_valid_frams.append(best_frames[1])
new_valid_frams.append(best_frames[2])
best_frm_list = get_frm_no_in_set(best_valid_frames)
invalid_frames_no = np.setdiff1d(i_train, best_frm_list)
new_valid_frams = []
for i in invalid_frames_no:
if i in new_valid_frams:
continue
index = i_train.tolist().index(i)
best_frames = []
valid_sift_num = 0
for j in best_frm_list:
if j == ref_img_no:
continue
for k in range(index):
if i_train[k] == ref_img_no or i_train[k] == j or j == i:
continue
sift_file = siftdir + 'sift_{:0>2d}_{:0>2d}_{:0>2d}_{:0>2d}.txt'.format(factor, j, i_train[k], i)
sift_correspondences = load_sift_correspondences(sift_file)
if len(sift_correspondences) > valid_sift_num:
best_frames = [ j, i_train[k], i]
valid_sift_num = len(sift_correspondences)
for k in range(index+1, len(i_train)):
if i_train[k] == ref_img_no or i_train[k] == j or j == i:
continue
sift_file = siftdir + 'sift_{:0>2d}_{:0>2d}_{:0>2d}_{:0>2d}.txt'.format(factor, j, i, i_train[k])
sift_correspondences = load_sift_correspondences(sift_file)
if len(sift_correspondences) > valid_sift_num:
best_frames = [ j, i, i_train[k]]
valid_sift_num = len(sift_correspondences)
if valid_sift_num > 3:
best_valid_frames.append(best_frames)
new_valid_frams.append(best_frames[1])
new_valid_frams.append(best_frames[2])
print("ref_img_no:{}\n".format(ref_img_no))
print("valid frame:\n")
for i in range(len(best_valid_frames)):
print("{},{},{}\n".format(best_valid_frames[i][0], best_valid_frames[i][1], best_valid_frames[i][2]))
return ref_img_no, best_valid_frames
def get_valid_frames(i_train, ref_img_no, total_num, siftdir, factor):
valid_frames = []
valid_idx = [[-1, -1, -1]] * total_num
valid_sift_num = [0] * total_num
for i in range(total_num):
if i == ref_img_no:
continue
if not (i in i_train):
continue
for j in range(i+1, total_num):
if j == ref_img_no:
continue
if not (j in i_train) :
continue
sift_file = siftdir + 'sift_{:0>2d}_{:0>2d}_{:0>2d}_{:0>2d}.txt'.format(factor, ref_img_no, i, j)
sift_correspondences = load_sift_correspondences(sift_file)
if len(sift_correspondences) > valid_sift_num[i]:
valid_idx[i] = [ref_img_no, i, j]
valid_sift_num[i] = len(sift_correspondences)
if len(sift_correspondences) > valid_sift_num[j]:
valid_idx[j] = [ref_img_no, i, j]
valid_sift_num[j] = len(sift_correspondences)
total_sift_num = 0
for i in range(total_num):
if valid_sift_num[i] > 3:
valid_frames.append(valid_idx[i])
total_sift_num = total_sift_num + valid_sift_num[i]
return valid_frames, total_sift_num
def in_invalid_frames(frm_idx_1, frm_idx_2, invalid_frames):
for i, j in invalid_frames:
if (i == frm_idx_1 and j == frm_idx_2) or (j == frm_idx_1 and i == frm_idx_2):
return True
return False
def in_valid_frames(frm_idx_1, frm_idx_2, valid_frames):
for i, j in valid_frames:
if (i == frm_idx_1 and j == frm_idx_2) or (j == frm_idx_1 and i == frm_idx_2):
return True
return False
def create_invalide_sift_idx(max_image_num):
invalide_sift_idx ={}
for i in range(max_image_num):
for j in range(i+1, max_image_num):
invalide_sift_idx["{}_{}".format(i,j)] = []
return invalide_sift_idx
def cof1(M,index):
zs = M[:index[0]-1,:index[1]-1]
ys = M[:index[0]-1,index[1]:]
zx = M[index[0]:,:index[1]-1]
yx = M[index[0]:,index[1]:]
s = torch.cat((zs,ys),axis=1)
x = torch.cat((zx,yx),axis=1)
return det(torch.cat((s,x),axis=0))
def alcof(M,index):
return pow(-1,index[0]+index[1])*cof1(M,index)
def adj(M):
result = torch.zeros((M.shape[0],M.shape[1]))
for i in range(1,M.shape[0]+1):
for j in range(1,M.shape[1]+1):
result[j-1][i-1] = alcof(M,[i,j])
return result
def invmat(M):
return 1.0/det(M)*adj(M)
def pose_transform(poses, ref_pose):
temp_pose = ref_pose.unsqueeze(0).repeat(poses.shape[0], 1, 1) # [2, 3, 4]
ref_r = temp_pose[:, :, :3] # [2, 3, 3]
ref_t = temp_pose[:, :, 3].unsqueeze(-1) # [2, 3, 1]
loc_r = poses[:, :, :3] # [2, 3, 3]
loc_t = poses[:, :, 3].unsqueeze(-1) # [2, 3, 1]
r = torch.matmul(ref_r, loc_r) # [2, 3, 3]
t = torch.matmul(ref_r, loc_t) + ref_t # [2, 3, 1]
ret_pose = torch.cat([r, t], dim=2) #[2, 3, 4]
return ret_pose
def get_pose_inverse(pose):
# poses-[n, 3, 4]
temp_pose = []
for i in range(pose.shape[0]):
pose_i = pose[i, ...] # [3, 4]
R_inv = invmat(pose_i[:, :3])
t = pose_i[:, 3] # [3, 1]
t_inv = -(R_inv @ t)
pose_i_inv = torch.cat([R_inv, t_inv.unsqueeze(-1)], dim=1) #[3, 4]
temp_pose.append(pose_i_inv)
pose_inv = torch.stack(temp_pose, dim=0) # [n, 3, 4]
return pose_inv
def get_valid_flag(pixel_coord, img_h, img_w):
coords_x, coords_y = torch.split(pixel_coord, 1, dim=2)
img_h_threshold = np.full(coords_y.shape, img_h) # np.full(coords_y.get_shape().as_list(), img_h)
img_h_threshold = torch.from_numpy(img_h_threshold).float() # tf.constant(img_h_threshold, dtype=tf.float32)
img_w_threshold = np.full(coords_x.shape, img_w) # np.full(coords_x.get_shape().as_list(), img_w)
img_w_threshold = torch.from_numpy(img_w_threshold).float() # tf.constant(img_w_threshold, dtype=tf.float32)
valid_flag_x = torch.where(torch.lt(torch.abs(coords_x), img_w_threshold.cuda()), torch.ones_like(coords_x, dtype=torch.float32), torch.zeros_like(coords_x, dtype=torch.float32) )
valid_flag_y = torch.where(torch.lt(torch.abs(coords_y), img_h_threshold.cuda()), torch.ones_like(coords_x, dtype=torch.float32), torch.zeros_like(coords_x, dtype=torch.float32) )
valid_flag = valid_flag_x * valid_flag_y
return valid_flag
def cam2pixel(cam_coords, intrinsics):
"""Transform coordinates in the camera frame to the pixel frame.
Args:
cam_coords: [B, 3]
intrinsics - [3, 3]
Returns:
coordinates -- [B, 2]
"""
b, _ = cam_coords.size()
cam_coords_flat = cam_coords.reshape(b, 3, -1) # [b, 3, 1]
b_intrinsics = intrinsics.unsqueeze(0).repeat(b, 1, 1) # [b, 3, 3]
pcoords = b_intrinsics @ cam_coords_flat # [b, 3, 1]
X = pcoords[:, 0] # [B, 1]
Y = pcoords[:, 1]
Z = pcoords[:, 2].clamp(min=1e-3)
X = X / Z # [B, 1]
Y = Y / Z
pixel_coords = torch.cat([X, Y], dim=1) # [B, 2]
return pixel_coords
def pose2proj_cam(poses, intrinsics):
'''
poses-[b=3, 3, 4]
intrinsics - [3, 3] '''
b_intrinsics = intrinsics.unsqueeze(0).repeat(poses.shape[0], 1, 1) # [b, 3, 3]
proj_cam = b_intrinsics @ poses # [B, 3, 4]
return proj_cam
def sift_project_constraint(correspondences, sift_pts, poses, intrinsics):
# correspondences-[2, N_sift , 2]
# sift_pts - [N_sift, 3]
# poses-[2, 3 , 4]
# intrinsics-[3, 3]
# temp = sift_pts[:, 0].unsqueeze(1)
if sift_pts.shape[0] == 0:
print("no sift_pts")
return 0
rot, tr = poses[:,:,:3], poses[:,:,-1:] # [2, 3, 3], [2, 3, 1]
rot0 = rot[0,...].unsqueeze(0).repeat(sift_pts.shape[0], 1, 1) # [N_sift, 3, 3]
rot1 = rot[1,...].unsqueeze(0).repeat(sift_pts.shape[0], 1, 1) # [N_sift, 3, 3]
rot = torch.cat([rot0, rot1], dim=0) # [2* N_sift, 3, 3]
tr0 = tr[0,...].unsqueeze(0).repeat(sift_pts.shape[0], 1, 1) # [N_sift, 3, 1]
tr1 = tr[1,...].unsqueeze(0).repeat(sift_pts.shape[0], 1, 1) # [N_sift, 3, 1]
tr = torch.cat([tr0, tr1], dim=0) # [2* N_sift, 3, 1]
batch_pts = sift_pts.unsqueeze(0).repeat(poses.shape[0], 1, 1) # [2, N_sift, 3]
batch_pts = batch_pts.reshape(-1, 3, 1) # [b=2* N_sift, 3, 1]
pixel_coords = rot @ batch_pts + tr
# print(pixel_coords)
pixel_coords = torch.cat([pixel_coords[:, 0, :], -pixel_coords[:, 1, :], -pixel_coords[:, 2, :]], dim = -1)
# print(pixel_coords)
pixel_coords = cam2pixel(pixel_coords,intrinsics) # [b=2* N_sift, 2]
pixel_coords = pixel_coords.reshape(poses.shape[0], -1, 2) # [2, N_sift, 2]
project_loss = torch.mean(torch.nn.functional.pairwise_distance(correspondences.reshape(-1, 2), pixel_coords.reshape(-1, 2), p=2))
return project_loss
def get_projected_pt(pts, poses, intrinsics):
# pts-[3* N_sift, 3]
# poses-[3, 3, 4]
# intrinsics-[3, 3]
# return-[3, *3*N_sift, 2]
rot, tr = poses[:,:,:3], poses[:,:,-1:] # [3, 3, 3], [3, 3, 1]
rot0 = rot[0,...].unsqueeze(0).repeat(pts.shape[0], 1, 1) # [3*N_sift, 3, 3]
rot1 = rot[1,...].unsqueeze(0).repeat(pts.shape[0], 1, 1) # [3*N_sift, 3, 3]
rot2 = rot[2,...].unsqueeze(0).repeat(pts.shape[0], 1, 1) # [3*N_sift, 3, 3]
rot = torch.cat([rot0, rot1, rot2], dim=0) # [3* 3*N_sift, 3, 3]
tr0 = tr[0,...].unsqueeze(0).repeat(pts.shape[0], 1, 1) # [3*N_sift, 3, 1]
tr1 = tr[1,...].unsqueeze(0).repeat(pts.shape[0], 1, 1) # [3*N_sift, 3, 1]
tr2 = tr[2,...].unsqueeze(0).repeat(pts.shape[0], 1, 1) # [3*N_sift, 3, 1]
tr = torch.cat([tr0, tr1, tr2], dim=0) # [3* 3*N_sift, 3, 1]
batch_pts = pts.unsqueeze(0).repeat(poses.shape[0], 1, 1) # [3, 3*N_sift, 3]
batch_pts = batch_pts.reshape(-1, 3, 1) # [b=3* 3*N_sift, 3, 1]
pixel_coords = rot @ batch_pts + tr # [b=3* 3*N_sift, 3]
pixel_coords = torch.cat([pixel_coords[:, 0, :], -pixel_coords[:, 1, :], -pixel_coords[:, 2, :]], dim = -1)
pixel_coords = cam2pixel(pixel_coords,intrinsics) # [b=3* 3*N_sift, 2]
pixel_coords = pixel_coords.reshape(poses.shape[0], -1, 2) # [3, 3*N_sift, 2]
return pixel_coords
def euler2mat(angle):
"""Convert euler angles to rotation matrix.
Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174
Args:
angle: rotation angle along 3 axis (in radians) -- size = [B, 3]
Returns:
Rotation matrix corresponding to the euler angles -- size = [B, 3, 3]
"""
B = angle.size(0)
x, y, z = angle[:,0], angle[:,1], angle[:,2]
cosz = torch.cos(z)
sinz = torch.sin(z)
zeros = z.detach()*0
ones = zeros.detach()+1
zmat = torch.stack([cosz, -sinz, zeros,
sinz, cosz, zeros,
zeros, zeros, ones], dim=1).reshape(B, 3, 3)
cosy = torch.cos(y)
siny = torch.sin(y)
ymat = torch.stack([cosy, zeros, siny,
zeros, ones, zeros,
-siny, zeros, cosy], dim=1).reshape(B, 3, 3)
cosx = torch.cos(x)
sinx = torch.sin(x)
xmat = torch.stack([ones, zeros, zeros,
zeros, cosx, -sinx,
zeros, sinx, cosx], dim=1).reshape(B, 3, 3)
rotMat = xmat @ ymat @ zmat
return rotMat
def pose_vec2mat(vec):
"""
Convert 6DoF parameters to transformation matrix.
Args:s
vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
Returns:
A transformation matrix -- [B, 3, 4]
"""
translation = vec[:, :3].unsqueeze(-1) # [B, 3, 1]
rot = vec[:,3:]
rot_mat = euler2mat(rot) # [B, 3, 3]
transform_mat = torch.cat([rot_mat, translation], dim=2) # [B, 3, 4]
return transform_mat
def epipolar_constraint(pts, mask):
# pts-[3, n_sift, 3]
# mask-[3, n_sift]
# loss = img2mse(pts[0, ...], pts[1, ...])
# loss = loss + img2mse(pts[0, ...], pts[2, ...])
# loss = loss + img2mse(pts[1, ...], pts[2, ...])
loss = torch.mean(((pts[0, ...] - pts[1, ...]) * mask[0].unsqueeze(-1).repeat(1, 3) * mask[1].unsqueeze(-1).repeat(1, 3)) ** 2)
loss = loss + torch.mean(((pts[0, ...] - pts[2, ...]) * mask[0].unsqueeze(-1).repeat(1, 3) * mask[2].unsqueeze(-1).repeat(1, 3)) ** 2)
loss = loss + torch.mean(((pts[1, ...] - pts[2, ...]) * mask[1].unsqueeze(-1).repeat(1, 3) * mask[2].unsqueeze(-1).repeat(1, 3)) ** 2)
return loss
# Positional encoding (section 5.1)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input' : True,
'input_dims' : 3,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
class NeRF(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):
"""
"""
super(NeRF, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
self.output_alpha_linear = nn.Linear(W, 1)
if use_viewdirs:
color_ch = input_ch + input_ch_views
else:
color_ch = input_ch
self.color_linears = nn.ModuleList(
[nn.Linear(color_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + color_ch, W) for i in range(D-1)])
self.output_color_linear = nn.Linear(W, 3)
def forward(self, x):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
alpha = self.output_alpha_linear(h)
if self.use_viewdirs:
h = x
else:
h = input_pts
for i, l in enumerate(self.color_linears):
h = self.color_linears[i](h)
h = F.relu(h)
if i in self.skips:
h = torch.cat([x, h], -1)
rgb = self.output_color_linear(h)
outputs = torch.cat([rgb, alpha], -1)
return outputs
def load_weights_from_keras(self, weights):
assert self.use_viewdirs, "Not implemented if use_viewdirs=False"
# Load pts_linears
for i in range(self.D):
idx_pts_linears = 2 * i
self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))
self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))
# Load feature_linear
idx_feature_linear = 2 * self.D
self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))
self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))
# Load views_linears
idx_views_linears = 2 * self.D + 2
self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))
self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))
# Load rgb_linear
idx_rbg_linear = 2 * self.D + 4
self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))
self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))
# Load alpha_linear
idx_alpha_linear = 2 * self.D + 6
self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))
self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))
# Ray helpers
def get_rays(H, W, K, c2w):
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
rays_o = c2w[:3,-1].expand(rays_d.shape)
return rays_o, rays_d
def get_sift_rays(i, j, K, c2w):
dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,-1].expand(rays_d.shape)
return rays_o, rays_d
def get_rays_np(H, W, K, c2w):
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
return rays_o, rays_d # [n, 3]
# added by shu chen
def get_sift_rays_np(i, j, K, c2w):
dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
return rays_o, rays_d
# ndc -- normal device coordinate
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[...,2]) / rays_d[...,2]
rays_o = rays_o + t[...,None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
o2 = 1. + 2. * near / rays_o[...,2]
d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
d2 = -2. * near / rays_o[...,2]
rays_o = torch.stack([o0,o1,o2], -1)
rays_d = torch.stack([d0,d1,d2], -1)
return rays_o, rays_d
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds-1), inds-1)
above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[...,1]-cdf_g[...,0])
denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
t = (u-cdf_g[...,0])/denom
samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
return samples