-
Notifications
You must be signed in to change notification settings - Fork 0
/
trans_model.py
205 lines (176 loc) · 9.25 KB
/
trans_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import lasagne
from theano import sparse
import theano.tensor as T
import theano
import layers
import numpy as np
import random
import copy
from numpy import linalg as lin
from collections import defaultdict as dd
from base_model import base_model
class trans_model(base_model):
"""Planetoid-T.
"""
def add_data(self, x, y, graph):
"""add data to the model.
x (scipy.sparse.csr_matrix): feature vectors for training data.
y (numpy.ndarray): one-hot label encoding for training data.
graph (dict): the format is {index: list_of_neighbor_index}. Only supports binary graph.
Let L and U be the number of training and dev instances.
The training instances must be indexed from 0 to L - 1 with the same order in x and y.
By default, our implementation assumes that the dev instances are indexed from L to L + U - 1, unless otherwise
specified in self.predict.
"""
self.x, self.y, self.graph = x, y, graph
def build(self):
"""build the model. This method should be called after self.add_data.
"""
x_sym = sparse.csr_matrix('x', dtype = 'float32')
y_sym = T.imatrix('y')
g_sym = T.imatrix('g')
gy_sym = T.vector('gy')
ind_sym = T.ivector('ind')
l_x_in = lasagne.layers.InputLayer(shape = (None, self.x.shape[1]), input_var = x_sym)
l_g_in = lasagne.layers.InputLayer(shape = (None, 2), input_var = g_sym)
l_ind_in = lasagne.layers.InputLayer(shape = (None, ), input_var = ind_sym)
l_gy_in = lasagne.layers.InputLayer(shape = (None, ), input_var = gy_sym)
num_ver = max(self.graph.keys()) + 1
l_emb_in = lasagne.layers.SliceLayer(l_g_in, indices = 0, axis = 1)
l_emb_in = lasagne.layers.EmbeddingLayer(l_emb_in, input_size = num_ver, output_size = self.embedding_size)
l_emb_out = lasagne.layers.SliceLayer(l_g_in, indices = 1, axis = 1)
if self.neg_samp > 0:
l_emb_out = lasagne.layers.EmbeddingLayer(l_emb_out, input_size = num_ver, output_size = self.embedding_size)
l_emd_f = lasagne.layers.EmbeddingLayer(l_ind_in, input_size = num_ver, output_size = self.embedding_size, W = l_emb_in.W)
l_x_hid = layers.SparseLayer(l_x_in, self.y.shape[1], nonlinearity = lasagne.nonlinearities.softmax)
if self.use_feature:
l_emd_f = layers.DenseLayer(l_emd_f, self.y.shape[1], nonlinearity = lasagne.nonlinearities.softmax)
l_y = lasagne.layers.ConcatLayer([l_x_hid, l_emd_f], axis = 1)
l_y = layers.DenseLayer(l_y, self.y.shape[1], nonlinearity = lasagne.nonlinearities.softmax)
else:
l_y = layers.DenseLayer(l_emd_f, self.y.shape[1], nonlinearity = lasagne.nonlinearities.softmax)
py_sym = lasagne.layers.get_output(l_y)
loss = lasagne.objectives.categorical_crossentropy(py_sym, y_sym).mean()
if self.layer_loss and self.use_feature:
hid_sym = lasagne.layers.get_output(l_x_hid)
loss += lasagne.objectives.categorical_crossentropy(hid_sym, y_sym).mean()
emd_sym = lasagne.layers.get_output(l_emd_f)
loss += lasagne.objectives.categorical_crossentropy(emd_sym, y_sym).mean()
if self.neg_samp == 0:
l_gy = layers.DenseLayer(l_emb_in, num_ver, nonlinearity = lasagne.nonlinearities.softmax)
pgy_sym = lasagne.layers.get_output(l_gy)
g_loss = lasagne.objectives.categorical_crossentropy(pgy_sym, lasagne.layers.get_output(l_emb_out)).sum()
else:
l_gy = lasagne.layers.ElemwiseMergeLayer([l_emb_in, l_emb_out], T.mul)
pgy_sym = lasagne.layers.get_output(l_gy)
g_loss = - T.log(T.nnet.sigmoid(T.sum(pgy_sym, axis = 1) * gy_sym)).sum()
params = [l_emd_f.W, l_emd_f.b, l_x_hid.W, l_x_hid.b, l_y.W, l_y.b] if self.use_feature else [l_y.W, l_y.b]
if self.update_emb:
params = lasagne.layers.get_all_params(l_y)
updates = lasagne.updates.sgd(loss, params, learning_rate = self.learning_rate)
self.train_fn = theano.function([x_sym, y_sym, ind_sym], loss, updates = updates, on_unused_input = 'ignore')
self.test_fn = theano.function([x_sym, ind_sym], py_sym, on_unused_input = 'ignore')
self.l = [l_gy, l_y]
g_params = lasagne.layers.get_all_params(l_gy, trainable = True)
g_updates = lasagne.updates.sgd(g_loss, g_params, learning_rate = self.g_learning_rate)
self.g_fn = theano.function([g_sym, gy_sym], g_loss, updates = g_updates, on_unused_input = 'ignore')
def gen_train_inst(self):
"""generator for batches for classification loss.
"""
while True:
ind = np.array(np.random.permutation(self.x.shape[0]), dtype = np.int32)
i = 0
while i < ind.shape[0]:
j = min(ind.shape[0], i + self.batch_size)
yield self.x[ind[i: j]], self.y[ind[i: j]], ind[i: j]
i = j
def gen_label_graph(self):
"""generator for batches for label context loss.
"""
labels, label2inst, not_label = [], dd(list), dd(list)
for i in range(self.x.shape[0]):
flag = False
for j in range(self.y.shape[1]):
if self.y[i, j] == 1 and not flag:
labels.append(j)
label2inst[j].append(i)
flag = True
elif self.y[i, j] == 0:
not_label[j].append(i)
while True:
g, gy = [], []
for _ in range(self.g_sample_size):
x1 = random.randint(0, self.x.shape[0] - 1)
label = labels[x1]
if len(label2inst) == 1: continue
x2 = random.choice(label2inst[label])
g.append([x1, x2])
gy.append(1.0)
for _ in range(self.neg_samp):
g.append([x1, random.choice(not_label[label])])
gy.append( - 1.0)
yield np.array(g, dtype = np.int32), np.array(gy, dtype = np.float32)
def gen_graph(self):
"""generator for batches for graph context loss.
"""
num_ver = max(self.graph.keys()) + 1
while True:
ind = np.random.permutation(num_ver)
i = 0
while i < ind.shape[0]:
g, gy = [], []
j = min(ind.shape[0], i + self.g_batch_size)
for k in ind[i: j]:
if len(self.graph[k]) == 0: continue
path = [k]
for _ in range(self.path_size):
path.append(random.choice(self.graph[path[-1]]))
for l in range(len(path)):
for m in range(l - self.window_size, l + self.window_size + 1):
if m < 0 or m >= len(path): continue
g.append([path[l], path[m]])
gy.append(1.0)
for _ in range(self.neg_samp):
g.append([path[l], random.randint(0, num_ver - 1)])
gy.append(- 1.0)
yield np.array(g, dtype = np.int32), np.array(gy, dtype = np.float32)
i = j
def init_train(self, init_iter_label, init_iter_graph):
"""pre-training of graph embeddings.
init_iter_label (int): # iterations for optimizing label context loss.
init_iter_graph (int): # iterations for optimizing graph context loss.
"""
for i in range(init_iter_label):
gx, gy = next(self.label_generator)
loss = self.g_fn(gx, gy)
print 'iter label', i, loss
for i in range(init_iter_graph):
gx, gy = next(self.graph_generator)
loss = self.g_fn(gx, gy)
print 'iter graph', i, loss
def step_train(self, max_iter, iter_graph, iter_inst, iter_label):
"""a training step. Iteratively sample batches for three loss functions.
max_iter (int): # iterations for the current training step.
iter_graph (int): # iterations for optimizing the graph context loss.
iter_inst (int): # iterations for optimizing the classification loss.
iter_label (int): # iterations for optimizing the label context loss.
"""
for _ in range(max_iter):
for _ in range(self.comp_iter(iter_graph)):
gx, gy = next(self.graph_generator)
self.g_fn(gx, gy)
for _ in range(self.comp_iter(iter_inst)):
x, y, index = next(self.inst_generator)
self.train_fn(x, y, index)
for _ in range(self.comp_iter(iter_label)):
gx, gy = next(self.label_generator)
self.g_fn(gx, gy)
def predict(self, tx, index = None):
"""predict the dev or test instances.
tx (scipy.sparse.csr_matrix): feature vectors for dev instances.
index (numpy.ndarray): indices for dev instances in the graph. By default, we use the indices from L to L + U - 1.
returns (numpy.ndarray, #instacnes * #classes): classification probabilities for dev instances.
"""
if index is None:
index = np.arange(self.x.shape[0], self.x.shape[0] + tx.shape[0], dtype = np.int32)
return self.test_fn(tx, index)