-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtest.py
95 lines (78 loc) · 3.04 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse
import numpy as np
import os
import re
import torch
from utils import *
from encoder_decoder import *
def main(beam_k,model_path, dictionary_target, fea, latex, saveto, output, idx_decoder):
# model architecture
params = {}
params['n'] = 256
params['m'] = 256
params['dim_attention'] = 512
params['D'] = 684
params['K'] = 113
params['growthRate'] = 24
params['reduction'] = 0.5
params['bottleneck'] = True
params['use_dropout'] = True
params['input_channels'] = 1
params['L2R'] = 0
params['R2L'] = 0
if idx_decoder ==1:
params['L2R'] = 1
end = 1
if idx_decoder ==2:
params['R2L'] = 1
end = 0
# load model
model = Encoder_Decoder(params)
load_checkpoint_part_weight(model, model_path)
model.cuda()
model.eval()
# load dictionary
worddicts = load_dict(dictionary_target)
worddicts_r = [None] * len(worddicts)
for kk, vv in worddicts.items():
worddicts_r[vv] = kk
# load data
test, test_uid_list = dataIterator(fea, latex, worddicts, batch_size=8, batch_Imagesize=500000, maxlen=20000, maxImagesize=500000)
with torch.no_grad():
fpp_sample = open(saveto, 'w')
test_count_idx = 0
for x, y in test:
for xx in x:
xx_pad = xx.astype(np.float32) / 255.
xx_pad = torch.from_numpy(xx_pad[None, :, :, :]).cuda() # (1,1,H,W)
#direction
sample, score ,attn_weights,next_alpha_sum = gen_sample_bidirection(model, xx_pad, params, False, k=beam_k, maxlen=1000, idx_decoder=int(idx_decoder))
score = score / np.array([len(s) for s in sample])
if len(score)==0:continue
ss = sample[score.argmin()]
# write decoding results
fpp_sample.write(test_uid_list[test_count_idx])
prd_strs=''
for vv in ss:
if vv == end: # <eos> # 'L2R' 1
break
prd_strs +=worddicts_r[vv] +' '
fpp_sample.write(' ' + worddicts_r[vv])
fpp_sample.write('\n')
print(test_count_idx, prd_strs)
test_count_idx+=1
fpp_sample.close()
print('test set decode done')
os.system('python compute-wer.py ' + saveto + ' ' + latex + ' ' + output+ ' '+str(idx_decoder))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-k', type=int, default=10)
parser.add_argument('-model_path', type=str)
parser.add_argument('-dictionary_target', type=str)
parser.add_argument('-test_dataset', type=str)
parser.add_argument('-label', type=str)
parser.add_argument('-saveto', type=str)
parser.add_argument('-output', type=str)
parser.add_argument('-idx_decoder', type=int)
args = parser.parse_args()
main(args.k, args.model_path, args.dictionary_target, args.test_dataset, args.label, args.saveto, args.output, args.idx_decoder)